电子传输层(ETL)的材料在聚合物太阳能电池(PSC)的性能中起着重要作用,但是面临挑战,例如低电子传输迁移率和电导率,较低的解决方案处理性以及极端的厚度敏感性,这将破坏光伏性能和大型制造技术的兼容性。为了应对这些挑战,设计和合成了两个特殊胺锚定的长链链的新型N型二酰亚胺分子(PDINB)可行地设计和合成。pdinb在常见的有机溶剂中显示出非常高的溶解度,例如二氯甲烷(> 75 mg ml -1)和乙醇含有乙酸作为添加剂(> 37 mg ml -1),当在活动层上沉积时会导致出色的纤维形成性。使用PDINB为ETL,全面增强了PSC的光伏性能,从而导致功率转化效率(PCE)高达18.81%。由于PDINB的强大自动效应和高电导率,它显示出可观的厚度耐受性能,其中设备保持持续高的PCE值,厚度从5到30 nm变化。有趣的是,PDINB可以用作不同类型的PSC中的通用ETL,包括非富烯PSC和全聚合物PSC。因此,PDINB可以作为PSC的有效ETL的潜在竞争候选者。
为了表征有机sem iConductor中的内在电荷传输过程,必须最小化外部效应(例如接触电阻,非理想的污染物和外部污染物)的外在效应的影响。[1–3]半导体介电界面对于电荷传输至关重要,因为陷阱和表面粗糙可以阻止有效的电荷转移。[4,5]虽然表面粗糙度易于表征,例如,使用原子力显微镜(AFM)及其来源很容易识别,但[6]对于电活动陷阱而言,这是高度无琐的。此类陷阱通常与有机场效应晶体管(OFET)中使用的介电的影响有关,因为介电常数和其他内在特性会影响电荷转运。[4,5,7-10]为了减少半导体 - 二元界面处的捕获(例如,水和其他固有或外在陷阱),典型的是,表面是由于使用自组装单层(SAMS)而被钝化的。[11]最近还用本质上惰性的六角硼(H-BN)用作介电,其目标是实现无陷阱界面。[12–14]
相邻芳香核之间的相互作用通常会导致螺旋结构,并由于轨道重叠的变化而影响沿柱状堆栈的电荷载流子传输。4 因此,PAH 中 p 堆积和氢键的充分结合使我们能够在很宽的温度范围内建立所需的液晶结构。PAH 的一个特例是萘嵌苯,它由近稠合萘组成。5 最突出的分子体系是苝四羧基二酰亚胺 (PDI),它根据其取代基和功能团组装成不同的螺旋结构。6 取代基通常以对称方式连接在 PDI 核心的两个酰亚胺位置上,并提供例如分子间氢键和 p 堆积相互作用。对于 PDI 1 螺旋纳米纤维,由于相邻分子的酰胺基团之间的氢键而组装(图 1)。 7 纤维的螺旋节距为几十纳米,这归因于定向氢键。两个酰亚胺位置上具有高空间需求的取代基也用于控制分子堆积。PDI 2 的树枝状基团刺激分子的横向旋转,并根据 PDI 核心和树枝状基元之间柔性间隔物的长度诱导复杂的螺旋柱状组织。螺旋柱可以包含 PDI 四聚体作为基本重复单元,这些四聚体基于每个层中并排的两个分子。8 在另一个