本手稿讨论了新的三合会输入双输出(TIDO)高增益DC-DC转换器首选用于微电网应用的有效分析。Tido Converter允许在输入处使用多个可再生能源发电机,并提供具有不同电压级别的双输出端口。Tido转换器具有高压增益,具有双向设施的多个端口,电压降低,当前应力和更好的工作效率。通过稳态分析,相关电压方程和波形详细介绍了所提出的转换器的电路配置。有效分析包括组件应力分析,损失分析和TIDO转换器的比较分析。使用PSIM软件模拟了建议的高增益TIDO DC-DC转换器。结果通过具有高晶粒输出电压的组件来验证各种组件和电流的电压,以有效的稳态工作性能。最后,有效地分析了15.45 kW,1000 V〜500 V 〜500 V DC-DC转换器中的中电压DC(MVDC)分布或混合电动汽车应用。
目前,微电子设备中用于芯片到封装连接的最常用材料是铝(Al)焊盘和铜(Cu)线。然而,用于连接这些组件的引线键合工艺可能导致金属间化合物的形成,从而导致电化学腐蚀 [1 – 3] ,以及产生柯肯达尔空洞 [4,5] 。这些问题严重限制了微电子封装的长期可靠性。为了解决半导体行业对材料的成本效益、性能和可靠性的担忧。自 21 世纪初以来,人们定期评估铜焊盘上的铜线键合(Cu-to-Cu 键合)方法,但从未发展成为工业应用。2018 年的综述 [6] 总结了挑战和局限性。铜是一种很有前途的微电子材料,因为它的电导率与铝的电导率之比为 5:3,而且熔点高,大大降低了电迁移 [7]。电沉积铜的固有特性,例如与发芽/生长类型相关的杂质和微观结构演变,会使其对腐蚀敏感。虽然铜的氧化膜提供了一定的防腐蚀保护,但它不像不锈钢等其他金属上形成的钝化膜那样稳定、致密或均匀 [8,9]。铜焊盘的集成对半导体行业提出了重大挑战。实现铜的受控表面状态对于实现与封装的可靠连接至关重要。
简介:自由放养的白尾鹿(Odocoileus virginianus)是位于密歇根州东北部(美国)的牛结核病(BTB)的自我维持的水库,(美国)不断使该地区的牛业陷入困境。自由娱乐鹿的收获,诱饵禁令和农场的缓解措施减少了但没有消除鹿的BTB,也没有消除向牛的传播。鹿的明显患病率很低(1-2%),但恒定,疫苗接种可能是帮助解决该问题和值得研究的附加工具。结核分枝杆菌Calmette-guérin(BCG)疫苗是一种广泛使用的人类疫苗用于结核病,在家庭牲畜和野生动植物中也接受了很好的研究。它是主要的疫苗候选者,口服输送是将其交付给自由放养鹿的逻辑手段,尽管以前从未尝试过。
本文介绍了使用激光微机械侧孔光纤(S-H)的基于强度的折射率(RI)传感器。为了实现这一目标,将微腔切成S-H的侧面表面,从而可以进入其结构内的一个空气孔。然后将几何修饰的纤维在两端连接到单模纤维,以在包含超脑激光器和光学信号分析仪的系统中进行结构研究。在下一步中,将浸入液施加到微型腔内的RI值,范围为1.30至1.57,增量为0.02。功率损失测量。基于获得的结果,可以得出结论,RI传感器已成功地开发了生物化学中的潜在应用。
混合可再生能源系统 (HRES) 被视为克服某些可再生能源(如太阳能和风能)波动性和随机性的解决方案。将波动的可再生能源与可控能源(如生物质燃料微型热电联产)相结合,构成了可显着减少 CO 2 排放和一次能源消耗的 HRES。本文旨在回顾基于微型热电联产的混合可再生能源系统的研究工作,并提出优化太阳能微型热电联产系统的案例研究。首先,根据原动机技术介绍可再生能源燃料微型热电联产系统:斯特林发动机、有机朗肯循环和光伏热能 (PVT)。根据不同原动机的优点、缺点和市场可用性对其进行评估。接下来,总结了包括太阳能和微型热电联产技术在内的混合可再生能源系统的几项研究工作,并强调了关键发现。最后,介绍了案例研究的结果,以论证系统混合的必要性。结果表明,需要更多关于 HRES 的实验数据以及关于能源管理策略和随机优化模型的研究工作。案例研究的结果显示,最大热可靠性和电可靠性分别为 68% 和 70%。优化的 PVT/电池/热存储系统无法满足案例研究的所有能源需求,但需要支持热源和电力来源。
最初发表于:Swayambhu, Meghna;Kümmerli, Rolf;Arora, Natasha (2023)。基于微生物组的犯罪现场污渍分析。应用与环境微生物学,89(1):e0132522。DOI:https://doi.org/10.1128/aem.01325-22
与许多领域一样,存在混杂效应(或偏见)在微生物研究中提出了重大挑战,包括使用微生物组数据来预测宿主表型。如果无法正确解决,混杂的人可能会导致虚假的关联,偏见的预测和误导性的解释。一个无表的示例是药物二甲双胍,通常规定治疗2型糖尿病(T2D),并且已知会影响肠道微生物组。在这项研究中,我们提出了使用微生物组数据进行人类表型预测的无混杂预测模型。这些模型在对抗性的Min-Max优化框架内利用端到端方法来得出与混杂因素不变的特征,同时考虑了混杂因素与预测结果之间的固有相关性。我们使用不同的网络体系结构实现了两个版本的无混杂预测变量:一个基于完全连接的网络(称为FNN CF),另一个基于以前的生物学知识(称为MicroKPNN CF)。我们在与T2D关联的微生物组数据集上评估了我们的模型,其中二甲双胍充当混杂因素。我们的结果表明,与不解释混杂因子并更有效地识别与表型相关的微生物标记的模型相比,无混杂的预测因子具有更高的精度,而不是受二甲双胍影响的标记。在先前的知识指导的方法中显示出较低的预测能力,但它提供了更大的可解释性,从而提供了对基本生物学机制的更多见解。
原发性肌肉减少症的特征是骨骼肌质量,强度和身体机能的逐渐逐渐丧失。尽管有相关的不良健康结果,但目前尚无治疗原发性肌肉减少症的药物。在这里,我们讨论了了解肠道微生物群体交叉词在原发性肌肉减少症中的机理作用方面的最新进展以及治疗意义。机械见解涵盖了肠营养不良在原发性肌肉减少症中的因果作用,这可能是通过肠道微生物元素衍生的生物活性代谢物(例如短链脂肪酸(SCFAS),次生胆汁酸),次生胆酸及其相关的信号通路,可能会转化为基于新的微生物的相关信号通路。此外,我们确定了在未来的研究中需要解决的挑战,以促进对肌肉减少症老年人的潜在新型治疗和差异诊断的转化。
当前对电解铝阴极碳钠渗透的研究主要是测量阴极膨胀曲线,主要显示宏观特征。然而,显微镜结构通常是不流失的。作为多孔介质,阴极碳块的扩散性能与其内部孔结构紧密相关。将阴极碳块视为多相复合材料,本研究从微结构的角度研究了钠扩散过程。开发了一个预测钠扩散的模型,考虑了孔隙率,温度,结合效应,电流降低和分子比例等因素。在Python中实现了一个随机聚合模型,并将其导入到有限元软件中,以使用Fick的第二定律模拟钠扩散。结果表明,孔隙率提高,温度较高,结合效应降低,电流密度增加和较高的分子比增强了钠浸润,降低了扩散耐药性并增加了扩散系数。模拟与实验结果很好地对齐,证实了其准确性和可靠性。
我们开发了一种简单的方法来制造微笼和笼状肿瘤球体,用于基于微流控芯片的检测。微笼装置由一系列蜂窝状隔间组成,底部有一层交联和琼脂糖涂层的明胶纳米纤维,顶部有一个 200 μm 孔径的网格。U87-MG 单细胞分散在网格中,孵育后肿瘤球体被限制在每个笼子隔间中。正如预期的那样,肿瘤球体以相同的大小一个接一个地分布在每个隔间中,并且在隔间内生长。球体的最终尺寸受到扩散和限制的限制。如果笼子的高度较小,则肿瘤下方的纳米纤维层可能会因生长中的肿瘤的机械应力而发生偏转。如果笼子的高度很大,肿瘤会自由生长而不受压力,但其大小会受到扩散的限制。在这两种情况下,肿瘤往往保持球形。为了说明该方法的稳健性,将肿瘤笼状装置可逆地集成到用于药物测试的微流体芯片中。我们的结果表明,在切向流条件下,考布他汀 A-4 对肿瘤分解有明显的影响。