摘要:利用工程化 T 细胞(包括经过改造以表达嵌合抗原受体 (CAR) 的细胞)来靶向癌细胞的细胞疗法在临床试验中已显示出良好的反应。然而,工程化 T 细胞反应必须加以调节,以防止严重的副作用,如细胞因子风暴和靶外反应。本文介绍了一类基于重组酶的基因回路,该回路可在使用 FDA 批准药物的过继性 T 细胞疗法中实现可诱导的一次性状态转换,从而创建一个可通用的平台,可用于控制基因表达的时间和强度。这些回路表现出记忆性,因此即使去除药物诱导剂,诱导的 T 细胞也会保持所做的任何改变。这种记忆特性可避免长时间暴露于药物诱导剂,从而降低与药物诱导剂相关的复杂性和潜在副作用。我们利用这些电路来控制抗 Her2-CAR 的表达,证明了这些电路能够调节 CAR 表达和 T 细胞活性。我们设想这个平台可以扩展到调节与 T 细胞行为有关的其他基因,以应用于各种过继性 T 细胞疗法。关键词:CAR、免疫疗法、合成生物学、基因电路、重组酶
土壤碳汇的容量和长期稳定性。显然,他的出色研究具有明确的目标,定义的科学问题和专门的实验设计,为土壤碳动态及其潜在机制的知识差距做出了巨大贡献。Wang博士发表了5份同行评审的SCI论文,是主要国际林业和生态期刊的第一作者,例如植物和土壤杂志,
在半导体中情况有所不同。在反转层或侵蚀的二维电子气体中,费米波长可以是大的50 nm。这是两个比金属大的数量级,并且在当今的微生物技术范围内。谐振隧道研究已在二维电子气体的子微米大小的区域中构成了能量水平的ae> q.l MEV,并通过GAAS-(AL,GA)的栅极电极作为异质结构固定在静电上。7“ 9对于典型电容C£10〜15 f,在毫米kelvin温度下,一个然后häsE2 /c〜δε ^> kt。< /div。在这种制度中,库仑阻止的经典理论将被一个理论代替,其中包括能量谱的离散性的影响。这是本文中解决的问题。
新颖的聚酰亚胺堆积材料,用于高线制造高什岛,田中Shigeru tanaka,汉字木木木马斯拉·尼西纳卡(Masaru Nishinaka)和日本摘要的Mutsuaki Murakami Kaneka Corporation,我们摘要我们已经开发了一种新的热量型材料,以高效率堆积的pwbs高speed speed i/o o i/o o i sep speeed i/o o o i/sep speed i/o o i/o o o i/o。这些PWB满足以下要求;精细电路,低介电特性和出色的机械性能的良好加工性。我们提出的聚酰亚胺堆积材料显示出3.1的介电常数(DK),介电损耗(DF)为0.01(在1GHz时)。此外,机械性能以下材料显示;低温膨胀系数(CTE)为45ppm,拉伸强度为100MPa。尽管材料的表面粗糙度低于200米,但我们还是成功地沉积了具有非常高的果皮强度的无电镀层铜层。这意味着即使使用常规的半添加过程,该材料也适用于制造精细的电路。实际上,我们可以制作一个小于10micron l/s(线路和空间)的精细电路。近年来,需要电子设备具有许多功能和高处理速度。为了满足这些要求,像高性能CPU这样的IC芯片已经演变为具有高时钟频率和高I/O数字。要将CPU安装到基板上,通常采用翻转芯片附件方法以表现出CPU的最大性能,因此基板必须具有高接线密度。堆积的PWB,其电路是由半粘液方法形成的,这些底物已使用。下一代CPU的下一代堆积PWB,预计将具有较高的I/O数字,必须具有小于20微米L/s(线路和空间)的精细电路。对于制造精细的电路,对于构建材料而言,形成细缝电路的构建材料很重要,可以尽可能地具有少量的表面粗糙度,并且能够在不剥落的情况下粘附电路。环氧树脂主要用于堆积材料。处理环氧类型的堆积材料,以使材料的表面粗糙,并通过锚固效果牢固地粘附电路。为了制造小于20微米L/s的下一代细缝电路,需要一种新的堆积材料,其表面粗糙度比现有材料的表面粗糙度较小,并且对电路的良好粘合度。此外,新的积累材料必须具有低CTE(热膨胀系数)和低介电性能,这将改善堆积PWBS的电气可靠性或电气性能。为了开发下一代堆积材料,我们开始开发一种新的聚酰亚胺积聚材料,该材料基于用于电绝缘材料的聚酰亚胺树脂的特性,该材料期望具有出色的性质。由于这项研究,我们开发了一种新型的热固性聚酰亚胺积聚材料,该材料符合上述要求。在这项调查中,副本在本文中,评估了材料上无电镀层铜层的吉赫兹(GHz)周围的热性能,介电特性,通过可加工性能通过可加工性能通过激光进行细插电路的加工性。首先设计了新堆积材料的目标特性,设计了新堆积材料的目标特性。- - 一个小于50 ppm--的热膨胀系数(CTE)的介电损耗(DF)小于0.010,在1GHz- -a机械强度上,在100MPA-抗性的机械强度上,没有卤化的化合物 - 乘积构建的精细材料构建均超过20个微观的构建,构建均超过20个微观的过程,该过程的构建均超过20个,构建的启动构建的开发型构建均超过20个,构建的开发型构建均超过20次,构建了启用的新构建。堆积材料的表面以通过半添加过程制造精细的电路,堆积材料需要具有少量表面粗糙度的表面,并且具有较高的果皮强度,并具有无电镀层铜层。
用于细线/间隔电路的受控表面蚀刻工艺 Ken-ichi Shimizu、Katsuji Komatsu、Yasuo Tanaka、Morio Gaku 三菱瓦斯化学公司,日本东京 摘要 随着半导体芯片设计向越来越细的线发展,塑料封装的 PWB 和基板的设计规则正朝着更高密度发展。首先,研究了传统减成工艺可以构建多细的线,发现即使使用一些新技术,该工艺的线/间隔也限制在 40/40 左右。下一个挑战是找到一种可以构建线/间隔并摆脱加成或半加成工艺的一些问题的工艺。经证实,与 CSE(受控表面蚀刻)工艺一起使用的改进的图案电镀工艺能够制作更细的线/间隔电路,例如大约 25/25 微米。CSE 工艺的特点是使用改进的软蚀刻溶液对基铜进行均匀蚀刻。简介 半导体芯片设计正朝着越来越细的线发展,以满足更多功能和高速的需求。这一趋势对高密度 PWB 和塑料封装基板提出了越来越高的需求,需要开发许多新材料和新工艺。为了满足这些要求,基板设计规则的一些关键点是线/间距和 PTH(镀通孔)或 BVH(盲孔)的焊盘直径。关于焊盘直径,人们付出了很多努力来减小孔径,工艺已从机械钻孔转变为激光钻孔,这已成为行业中处理较小孔(例如约 80 微米)的标准。另一方面,许多研究同时进行以开发更小的线/间距。然而,对更细线/间距的需求越来越强烈,未来将更加强烈。因此,本报告的第一个目标是找出“减法”可以实现的最小线/间距,因为自 20 世纪 60 年代多层 PWB 进入市场以来,这种方法一直被用作铜线形成的主要工艺。接下来,研究了另一种方案:为了实现更精细的线/间距,人们开始研究“图案电镀工艺”。在 20 世纪 60 年代,除了“减成法”等面板电镀工艺外,还开发了“图案电镀工艺”、“加成法”和“半加成法”等多种图案电镀工艺。最近,由于能够实现更精细的线/间距和高频矩形横截面,这种图案电镀工艺比面板电镀更受业界青睐。因此,下一个挑战是找到一种能够支持 25/25 等更精细的线/间距技术的工艺。为了解决“半加成法”中的一些问题,人们研究了“图案电镀工艺”。