Lassen Lodge水力发电720 4.5 EO HY DRO 4.5 TEHAMA WRIGHT SOLAR 779 80.0 fc PHOTOV OLTAIC 200.0存储80.0 Merced第五标准Solar 954 150.0 PC PCHOV OLTAIC 150.0存储150.0储物储存117.0 Fresno Lassno Lassno lablasthiir thamblamblabliar 0.5 0.5 0.5 0.5 0.5 0.5 0.5 2 1002 2 1002 2 1002 2 1002 2 1002 2 1002 212 1027 20.0 FC Storage 20.0 FRESNO ALTAMONT MIDWAY LTD 1096 5.0 EO Wind Turbine 5.0 ALAMEDA BEAR CANYON ENERGY STORAGE 1097 13.0 FC Storage 13.3 LAKE NORTH CENTRAL VALLEY 1109 132.0 FC Storage 150.0 SAN JOAQUIN ULTRAPOWER CHINESE STATION BESS 1116 10.0 FC Storage 10.0 TUOLUMNE WESTLANDS ALMOND 1136 19.9 EO Photov oltaic 20.0 KINGS MEDEIROS SOLAR 1239 26.5 EO Photov oltaic 28.4 MERCED PAULSELL SOLAR ENERGY CENTER 1350 20.0 PC Photov oltaic 20.0 Storage 20.0 STANISLAUS WEST FORD FLAT ENERGY STORAGE 1367 25.0 FC Storage 26.3 LAKE GONZAGA WIND FARM 1378 76.4 FC Wind Turbine 80.0 Storage 50.0 MERCED LAS CAMAS 1 1382 100.0 FC Photov oltaic 102.5 MERCED LAS CAMAS 3 1456 100.0 FC Photov oltaic 102.5 MERCED MILPA POWER BANK 1457 3.0 FC Storage 3.0 SANTA CLARA TEPONA OFF-SHORE WIND 1491 156.0 EO Wind Turbine 161.9 HUMBOLDT HYDASPES 1558 40.0 EO Storage 41.4 Photov oltaic 40.6 stanislaus denali能源存储1690 101.2 PC存储102.0 San Joaquin Oakland ES单元3 1830 55.0 FC存储55.7 Alameda Cascade cascade储备存储膨胀1835 20.0 FC存储20.3 San Joaaquin Brix soptry Stoceri
抽象的片上光电探测器是光学通信中必不可少的组件,因为它们将光转换为电信号。光压计是光电探测器的类型,它通过在光吸收时由电子温度波动引起的电阻变化起作用。它们被广泛用于从紫外线到mir的宽波长范围,并且可以在宽大的材料平台上运行。在这项工作中,我引入了一种新型的波导集成剂量计,该重点在标准材料平台上从NIR到MIR以透明的导电氧化物(TCO)作为活性材料运行。此材料平台可以使用相同的材料同时构建调制器和光电探测器,该材料完全兼容CMO,并易于与被动芯片组件集成。此处提出的光压计由放置在肋光子波导内部的薄质TCO层组成,以增强光吸收,然后将TCO中的电子加热至高于1000 K的温度。电子温度的升高导致电子迁移率降低电子迁移率和导致的电阻变化。因此,只需几乎没有光学输入功率的微量流量,就可以达到超过10 A/W的响应率。计算表明,通过较低的TCO掺杂,可以预期进一步改进,从而在片上光电探测器中打开新的门。
图1。基因组在Jaspar数据库35中列出的107个酵母转录因子(TF)的酵母转录因子结合(A)的映射(a),在蛋白质编码基因中,具有已知DNA序列基因的蛋白质编码基因中的TF结合位点的堆叠条形图描述了堆叠的条形图(绿色和黄色)。fiMO 36用于扫描结合位点,以了解阈值p <0.00025的基序(方法)。所有启动子的DNA序列(来自TSS的-400至+200 bps)均用作背景模型。(b)热图代表了178 TF与5467个启动子的二元结合事件,该启动子由无监督的K-均值聚集。黄色条代表结合和深蓝色无结合。(c)框图显示了面板1b的每个群集中在基因调节区域检测到的TF数量:cluster-I(1-40 TFS);群集II(10-65 TFS);集群III(32-137 TFS)。Welch t检验的结果以1C-1E显示。对此的显着性和所有后续数字均定义为-ns:> 0.05,*:0.05-0.01,**:0.01- 0.001,***:0.001-0.0001,****:p <= 0.0001。(d)显示了我们的TF结合簇(图1b)在TFIID和CR基因26中的分布。(e)框图显示了每个集群中启动子的NDR宽度。据报道,在5467个分析启动子37中,已有5237个NDR宽度。(f)基于结合事件的TF之间的相关性。群集图显示TF-TF相关性的层次聚类。先前建立的TF相互作用的示例以红色突出显示。相关值范围为-0.15至0.9。黑色突出显示的左上簇包含富含II基因的TF;黑色突出显示的中间簇包含富含簇III基因的TF。评估TF结合位点的DNA序列特异性,我们分析了
大多数动脉粥样硬化事件(例如,脑梗死或心肌梗塞)通常是由于颈动脉中的斑块破裂或侵蚀而发生的,因此迫切需要评估斑块脆弱性并预测不良的脑遭受脑脑事件。然而,从稳定的斑块到纤细颈动脉威胁生命的高风险斑块的监测演变是一个巨大的挑战,由于没有足够的空间分辨率来基于大多数报道的荧光探针对颈动脉进行成像。Herein, copolymerizing with the small molecules of acceptor-donor-acceptor-donor-acceptor (A-D-A ′ -D-A) and the electron-donating units (D ′ ), the screened second near-infrared (NIR-II) nanoprobe presents high quantum yield and good stability, so that it enables to image slender carotid vessel with enough spatial resolution.令人鼓舞的是,NIR-II纳米探针可以有效地靶向内部巨噬细胞,同时区分活着的小鼠颈动脉粥样硬化中的脆弱斑块。此外,NIR-II纳米探针可以动态监测颈动脉斑块中的新鲜出血点,表明斑块不稳定的风险增加。此外,磁共振成像与NIR-II荧光成像集成在一起,从而通过将超级超级磁铁氧化铁掺入NIR-II纳米螺旋体中,从而为微妙的结构(例如窄管腔和脂质池)提供对比度。因此,这种混合NIR-II/磁共振成像多模式纳米探针为评估颈动脉斑块负担,选择高风险斑块和成像内的出血提供了有效的工具,这是有望减少脑/心肌梗塞梗死的介质和摩擦质量的有希望的。
生成网络在分销学习方面取得了巨大的经验成功。许多现有的实验表明,生成网络可以从低维易于样本分布中生成高维的复杂数据。但是,现有的现象不能被现有理论所构成。广泛持有的歧管假设推测,自然图像和信号等现实世界数据集表现出低维几何结构。在本文中,我们通过假设数据分布在低维歧管上支持数据分布来考虑这样的低维数据结构。我们证明了Wasserstein-1损失下的生成网络的统计保证。我们表明,Wasserstein-1损失取决于固有维度而不是环境数据维度,以快速的速率收敛至零。我们的理论利用了数据集中的低维几何结构,并认为生成网络的实际力量。我们不需要对数据分布的平稳性假设,这在实践中是可取的。
摘要我们根据近红外光谱制度的芯片尺度集成光电探测器的实现和表征,基于在氮化硅硅硅硅基上的摩西2 /WS 2异缝的整合。这种配置在780 nm的波长(表明内部增益机制)下达到〜1 a w -1的高响应性,同时将暗电流抑制至〜50 pa的水平,与仅Mose 2的参考样本相比,降低了〜50 pa的水平。我们测量了暗电流的功率频谱密度低至〜1×10 - 12 a hz -0.5,从中,我们从中提取噪声等效功率(NEP)为〜1×10-12 - 12 W Hz -0.5。为了演示设备的实用性,我们将其用于表征与光电探测器相同芯片上的微林共振器的传输函数。能够在芯片上整合局部光电电视机并在近红外制度下操作具有高性能的设备,这将在光学通信,量子光子学,生物化学传感等的未来集成设备中发挥关键作用。
首先,我要感谢我的主管卢卡·贝尼尼(Luca Benini)博士给我这个机会攻读博士学位。在他的小组中,在这段时间内为他的持续指导和支持,以及在探索自己的想法的同时给我的自由和信任。我也非常感谢他对我未来的努力的宝贵建议和支持。我还要感谢我的共审见者BenjamínBéjarHaro博士和Maurizio Valle博士对我的工作的兴趣,并为我提供了许多关于本文的建设性评论。特别感谢我的第二位顾问Michele Magno博士向我介绍了小组和学术界,支持我并推动我的学术生涯,以及他在学术界和生活中的所有技巧。我的感激之情也感谢卢卡斯·卡维格利(Lukas Cavigelli)博士在我在实验室的早期阶段对我进行监督,并说服我采取了这一博士学位,这真是真正令人满意的生活体验。我也非常感谢Gagandeep Singh博士的拥抱和支持我的项目想法,并为他提供的所有建议和支持,并继续给我。我还要对Giacomo Indiveri教授表示衷心的感谢,在他的小组的学期项目中,我与他一起进行了学术研究的第一步,他的建议和支持一直是,并且对我过去和将来的旅程至关重要。
_________________________ 注意:本手稿由 UT-Battelle, LLC 根据与美国能源部签订的合同编号 DE-AC05-00OR22725 撰写。美国政府保留且出版商在接受文章发表时承认美国政府保留非排他性、已付费、不可撤销的全球许可,以出于美国政府目的出版或复制本手稿的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的成果。† 与本工作相关的临时专利申请已提交,美国临时申请序列号为 63/332,403,提交日期为 2022 年 4 月 19 日。
_________________________ 注意:本手稿由 UT-Battelle, LLC 根据与美国能源部签订的合同编号 DE-AC05-00OR22725 撰写。美国政府保留且出版商在接受文章发表时承认美国政府保留非排他性、已付费、不可撤销的全球许可,以出于美国政府目的出版或复制本手稿的已出版形式,或允许他人这样做。能源部将根据 DOE 公共访问计划 ( http://energy.gov/downloads/doe-public-access-plan ) 向公众提供这些联邦资助研究的成果。† 与本工作相关的临时专利申请已提交,美国临时申请序列号为 63/332,403,提交日期为 2022 年 4 月 19 日。
本文介绍了一种新开发的基于物理的成像模拟器环境 SISPO 的架构和功能,该环境专为小型太阳系天体飞越和类地行星表面任务模拟而开发。该图像模拟器利用开源 3-D 可视化系统 Blender 及其 Cycles 渲染引擎,支持基于物理的渲染功能和程序微多边形位移纹理生成。该模拟器专注于逼真的表面渲染,并具有补充模型,可为彗星和活跃小行星生成逼真的尘埃和气体环境光学模型。该框架还包括用于模拟最常见图像像差的工具,例如切向和矢状散光、内部和外部彗形像差以及简单的几何畸变。该模型框架的主要目标是通过更好地模拟成像仪器性能表征、协助任务规划和开发计算机视觉算法来支持小型太空任务设计。 SISPO 允许模拟轨迹、光线参数和相机的固有参数。