五氯苯酚(PCP)是一种常见的顽固和有毒的地下水污染物,可抵抗降解,生物蓄积,并具有远程环境运输的潜力。采取适当的措施处理生命周期后果的污染物,需要更好地了解其在地下的行为。我们认识到,随着机器学习(ML)技术在环境应用中的到来,在受污染的地下水站点增强决策的巨大潜力。我们使用ML来增强对地下PCP传输特性动力学的理解,并确定影响其运输和命运的关键水力化学和水文地质驱动因素。我们证明了通过数据驱动方法提供的这种互补知识如何在两个高度受污染的瑞典地下水站点进行更有针对性的MONI进行和修复计划,并在此验证了该方法。我们评估了6种可解释的ML方法,3个线性回归器和3个非线性(即基于树的)回归体,以预测地下水中的PCP浓度。建模结果表明,发现简单的线性ML模型在没有任何缺失值的数据集的观察结果中很有用,而基于树的回归器更适合包含缺失值的数据集。考虑到在受污染的现场调查期间收集的数据集中缺少值很常见,这对于受污染的现场计划者和经理来说可能非常重要,最终降低了现场调查和监视成本。此外,我们使用SHAP(Shapley添加说明)方法解释了所提出的模型,以破译不同驱动因素在关键水力地球化学变量的预测和模拟中的重要性。其中,氯苯酚的总和在分析中具有最高的意义。除了模型,四氯苯酚,溶解有机碳和电导率外,还设置了该设置。因此,可以使用ML方法来改善对地下水污染运输动力学的理解,填补使用更复杂的确定性建模方法时仍然存在的知识空白。
