wroclaw,波兰量子点(QD)目前用于量子技术和量子信息的许多领域。栅极定义的QD,通过在量子井上施加电极而产生的QD可以通过调整应用于电极的电势来操纵其性质。高质量的多数设备[1]。但是,这种点通常只能同时限制一种类型的载体,这意味着它们不能直接与光线搭配,从而将信息与飞行的光子Qubits交换。相反,自组装的QD可以限制电子和孔,因此可以光学活跃。尽管比栅极定义的QD更容易制造,但是它们的性质往往更难控制,因为它们的布置和定义特征(大小,形状和化学成分的细节)的特征是它们的特征。因此,需要将两种QD的优点,即,具有光学活性的QD之间易于调节的QD属性和受控耦合。
08 Jan 25 菲尼克斯天港国际机场,亚利桑那州 53F 2 VI 07 Jan 25/1919 2 VI 07 Jan 25/1919 07 Jan 25 特拉维斯空军基地,加利福尼亚州 53F 3 VI 07 Jan 25/2004 3 VI 07 Jan 25/2004 07 Jan 25 特拉维斯空军基地,加利福尼亚州 53F 4 VI 04 Jan 25/1600 4 VI 04 Jan 25/1600 07 Jan 25 洛杉矶湖畔 10F 3 VI 07 Jan 25/2300 3 VI 07 Jan 25/2300 07 Jan 25 佐治亚州多宾斯 ARB 0F 0 N/AN/A 0 N/AN/A 06 Jan 25 安德鲁斯空军基地,马里兰州53F 0 N/AN/A 0 N/AN/A 06 1 月 25 日 马里兰州安德鲁斯空军基地 53F 1 VI 05 1 月 25/0511 1 VI 05 1 月 25/0511 05 1 月 25 日 内利斯空军基地,内华达州 52F 0 N/AN/A 0 N/AN/A 04 1 月 25 日 夏威夷州丹尼尔·K·井上国际机场 53F 0 N/AN/A 0 N/AN/A 03 1 月 25 日 伊利诺斯州斯科特空军基地 52F 0 N/AN/A 0 N/AN/A 02 1 月 25 日 佛蒙特州伯灵顿 0F 0 N/AN/A 0 N/AN/A 02 1 月 25 日 夏威夷州丹尼尔·K·井上国际机场 53F 0 N/AN/A 0 N/AN/A 01 月 25 日 无定期航班 N/AN/AN/AN/AN/AN/AN/AN/A 31 月 24 日 Daniel K Inouye Intl, HI 0F 0 N/AN/A 0 N/AN/A 30 月 24 日 无定期航班 N/AN/AN/AN/AN/AN/AN/AN/A 29 月 24 日 无定期航班 N/AN/AN/AN/AN/AN/AN/AN/A 28 月 24 日 Andrews AFB, MD 53F 1 VI 28 月 24/0900 1 VI 28 月 24/0900 27 月 24 日 Hickam AFB, HI 20F 20 VI 27 月 24/1300 20 VI 27 月 24/1300 26 月 24 日 无定期航班 N/AN/AN/AN/AN/AN/AN/AN
2025年1月17日,美国环境保护局(EPA)签署了一项最终规则,该规则使西弗吉尼亚州的主要执法局(或“至高无上”)在VI级地下注射井上签署了碳捕获和序列(CCS)工业的使用,将其用于州内的地下地质地质地质捕获碳。[1]西维尼亚州的批准过程不到一年;西弗吉尼亚州于2024年5月1日提交了VI级别的申请,并在八个月后获得了EPA的批准。[2]这标志着西弗吉尼亚州对CCS行业的监管监督的重大过渡,这是该州CCS行业的主要监管机构从EPA转移到西弗吉尼亚州环境保护部(WVDEP)。[3]授予WVDEP的VI级井的首要地位,使国家能够管理自己的CCS项目,并利用国家级专业知识来加快许可过程。[4]这可能会导致西弗吉尼亚州内CCS行业的增长。西弗吉尼亚州现在加入路易斯安那州,北达科他州和怀俄明州,具有VI级别的国家。西弗吉尼亚州现在加入路易斯安那州,北达科他州和怀俄明州,具有VI级别的国家。
DART – 休假、限制或调动天数 DASHO – 指定机构安全与健康官员 DRO – 指定负责官员 DUSO – 主管运营的副次长 EO – 行政命令 ESS – 环境、安全与可持续性 FAR – 联邦采购条例 GFE – 政府提供的设备 GHS – 全球统一制度 HLA – 直升机着陆区 JHA/JSA – 工作危害分析/工作安全分析 IRC – 井上区域中心 ISO – 国际标准化组织 LESCO – 直线办公室环境与安全合规官 LO/SO(LOs/SOs) – 直线办公室/职员办公室 MOC – 变更管理 NECSAS – NOAA 环境合规与安全评估系统 NEOSHC – NOAA 行政职业安全与健康委员会 NOSH – NOAA 职业安全与健康部 OMAO – 海洋与航空运营办公室 ORM – 运营风险管理 OSH – 职业安全与健康 OSHA – 职业安全与健康管理局 OSHMS – 职业安全与健康管理系统 OSV – 其他特种车辆 PBA – 项目基线评估 PDCA – 计划、执行、检查、行动 PEL – 允许暴露限值 POV – 个人车辆 PPE – 个人防护设备 RM – 风险管理 SDS – 安全数据表 SECO – NOAA 安全和环境合规办公室 SOP – 标准操作程序 SRV – 小型研究船 SSMC – 银泉都会中心 TCIR – 总病例发生率 TDY – 温度
A - 阿拉巴马 ( ) D 菲茨杰拉德 DDG 62 ^ + 指挥官 JC 拉森 D 查菲 DDG 90 + 指挥官 M. 比尔 P 卡尔 M 莱文 DDG 120 指挥官 J. 霍尔布鲁克 B - 布雷默顿 ( ) D 奥凯恩 DDG 77 ^ + 指挥官 R. 雷 P 丹尼尔井上 DDG 118 ^ + 指挥官 DY 海尔 P 迪凯特 DDG 73 ^ + 指挥官 MR 富尔塔多 SD - 圣地亚哥 ( ) D 普雷布尔 DDG 88 ^ + 指挥官 NJ 蔡斯 P 哈尔西 DDG 97 + 指挥官 AG 布朗宁 P 弗兰克 E 彼得森 JR DDG 121 ^ + 上尉 K. 路易斯 E - 埃弗里特 ( ) D 斯普鲁恩斯 DDG 111 + CDR CD IVEY E JOHN S MCCAIN DDG 56 ^ + CDR CR YASTE P MICHAEL MURPHY DDG 112 + CDR JE HOLTHAUS F - CAMP PENDLETON ( 0 ) D STOCKDALE DDG 106 + CDR J. BUMMARA D PINCKNEY DDG 91 ^ + CDR EJ MADONIA D MOMSEN DDG 92 CDR RR DOWNING G - 新加坡 ( 0 ) D RUSSELL DDG 59 ^ CDR MJ McINERNEY P WAYNE E MEYER DDG 108 + CDR RC FAIRBANKS S AMERICA LHA 6 CAPT MJ PARDO H - PORT HUENEME ( 0 ) S GREEN BAY LPD 20 CAPT SB STEVENS L - PORTLAND ( 0 ) S NEW奥尔良 LPD 18 CAPT P. GERMAN M - 密西西比 ( 2 ) DS RUSHMORE LSD 47 CDR B. GALLANT N - 塞班岛 ( 0 ) O - 冲绳 ( 0 )
[查尔默斯 01] 大卫·查尔默斯,Hajime Hayashi 译:《意识:寻找大脑和精神的基本理论》,白洋社(2001) [克拉克 22] 安迪·克拉克,Takashi Ikegami 和 Gentaro Morimoto 译:《显现的存在:大脑、身体和世界的重新整合》,Hayakawa Publishing(2022) [笛卡尔 67] 勒内·笛卡尔,Taro Ochiai 译:《方法论》,Iwanami Bunko(1967) [德勒兹 12] 吉尔斯·德勒兹和菲利克斯·瓜塔里,Osamu Zaitsu 译:《什么是哲学?》,Kawade Bunko(2012) [丹尼特 96] 丹尼尔·丹尼特,Tadashi Wakashima 和 Manabu Kawata 译:《意图》 “态度”的哲学——人能读懂别人的行为吗? ,白洋社(1996) [Ganassia 19] Ganassia Jean-Gabriel,伊藤直子译:埋葬虚假的AI神话“奇点”,早川出版(2019) [Heidegger 13] Heidegger Martin,熊野澄彦译:存在与时间,岩波文库(2013) [Hume 04] 休谟·戴维,斋藤繁雄、一之濑正树译:人类智力研究——附人性论概要,法政大学出版会(2004) [Husserl 79] 胡塞尔·埃德蒙,渡边次郎译:理念 I-I 纯粹现象学概论,美铃书房(1979) [ Husserl 01] 埃德蒙德·胡塞尔,滨涡达二译:《笛卡尔的沉思》,岩波文库(2001) [Jung 16] 卡尔·荣格,林道吉译:《个体化与曼荼罗(新版)》,美铃书房(2016) [Kant 60] 伊曼纽尔·康德,篠田秀夫译:《纯粹理性批判》,岩波文库(1960) [Kurzweil 07] Ley Kurzweil,井上健、小野木章监修翻译
> DDG 82 拉森 > DDG 83 霍华德 > DDG 84 布尔克利 > DDG 85 麦克坎贝尔 > DDG 86 舒普 > DDG 87 梅森 > DDG 88 普雷布尔 > DDG 89 马斯廷 > DDG 90 查菲 > DDG 91 平克尼 > DDG 92 莫姆森 > DDG 93 郑勋 > DDG 94 尼采 > DDG 95 詹姆斯·E·威廉姆斯 > DDG 96 班布里奇 > DDG 97 哈尔西 > DDG 98 福雷斯特·谢尔曼 > DDG 99 法拉格特 > DDG 100 基德 > DDG 101 格里德利 > DDG 102 桑普森 > DDG 103 特鲁克斯顿 > DDG 104 斯特雷特 > DDG 105 杜威 > DDG 106 斯托克代尔 > DDG 107 格雷夫利 > DDG 108 韦恩 E 迈耶 > DDG 109 杰森邓纳姆 > DDG 110 威廉 P 劳伦斯 > DDG 111 斯普鲁恩斯 > DDG 112 迈克尔墨菲 > DDG 113 约翰芬 > DDG 114 拉尔夫约翰逊 > DDG 115 拉斐尔佩拉尔塔 > DDG 116 托马斯哈德纳 > DDG 117 保罗伊格内修斯 > DDG 118 丹尼尔井上* > DDG 119 德尔伯特 D 布莱克* > DDG 120 卡尔 M 莱文* > DDG 121 弗兰克 E 彼得森 Jr* > DDG 122 约翰巴西隆* > LCS 21 明尼阿波利斯/圣。保罗* > LCS 22 堪萨斯城 > LCS 23 库珀斯敦* > LCS 24 奥克兰 > LCS 25 马里内特* > LCS 26 莫比尔* > DDG 128 泰德·史蒂文斯*
2021; 26(10):38-43。3)sasaki sumimi inoue takao。 COVID -19疫苗 - 适度的扩散。学术趋势2021; 26(10):31-7。4)Hacein-Bey-Abina S,Pai Sy,Gaspar HB等。用于X连锁严重合并免疫缺陷的修饰γ-逆转录病毒载体。n Engl J Med 2014; 371:1407-17。5)Onodera Masafumi。通过基因组编辑进行基因治疗的进一步发展。日本造血细胞移植协会杂志2018; 7(2):32-9。6)BöckD,Rothgangl T,Villiger L等。在小鼠中的体内质量编辑。 SCI Transl Med 2022; 14:EABL9238。 7)Demeulemeester J,de Rijck J,Gijsbers R,Debyser Z.逆转录病毒Inte-Crimination:地点事项:逆转录病毒Inte磨牙部位选择的机制和后果。 生物评估2015; 37:1202-14。 8)Liang Q,Vlaar EC,Catalano F等。 慢病毒基因治疗可防止鼠绒性疾病中的抗人类酸α-葡萄糖苷酶抗体形成。 mol ther方法Clin Dev 2022; 25:520-32。 9)Cavazzana-Calvo M,Hacein-Bey S,De Saint Basile G等。 人类严重合并免疫缺陷(SCID)-X1疾病的基因疗法。 Science 2000; 288:669-72。 10)Hacein-Bey-Abina S,Le Deist F,Carlier F等。 通过体内基因治疗对X连锁严重的免疫缺陷进行持续校正。 n Engl J Med 2002; 346:1185-93。 11)Howe SJ,Mansour MR,Schwarzwaelder K等。 插入诱变与获得的体细胞突变相结合导致SCID-X1患者基因治疗后的白血病发生。 J Clin Invest 2008; 118:3143-50。 12)Cartier N,Hacein-Bey-Abina S,Bartholomae CC等。在小鼠中的体内质量编辑。SCI Transl Med 2022; 14:EABL9238。7)Demeulemeester J,de Rijck J,Gijsbers R,Debyser Z.逆转录病毒Inte-Crimination:地点事项:逆转录病毒Inte磨牙部位选择的机制和后果。生物评估2015; 37:1202-14。8)Liang Q,Vlaar EC,Catalano F等。慢病毒基因治疗可防止鼠绒性疾病中的抗人类酸α-葡萄糖苷酶抗体形成。mol ther方法Clin Dev 2022; 25:520-32。9)Cavazzana-Calvo M,Hacein-Bey S,De Saint Basile G等。人类严重合并免疫缺陷(SCID)-X1疾病的基因疗法。Science 2000; 288:669-72。 10)Hacein-Bey-Abina S,Le Deist F,Carlier F等。 通过体内基因治疗对X连锁严重的免疫缺陷进行持续校正。 n Engl J Med 2002; 346:1185-93。 11)Howe SJ,Mansour MR,Schwarzwaelder K等。 插入诱变与获得的体细胞突变相结合导致SCID-X1患者基因治疗后的白血病发生。 J Clin Invest 2008; 118:3143-50。 12)Cartier N,Hacein-Bey-Abina S,Bartholomae CC等。Science 2000; 288:669-72。10)Hacein-Bey-Abina S,Le Deist F,Carlier F等。通过体内基因治疗对X连锁严重的免疫缺陷进行持续校正。n Engl J Med 2002; 346:1185-93。11)Howe SJ,Mansour MR,Schwarzwaelder K等。插入诱变与获得的体细胞突变相结合导致SCID-X1患者基因治疗后的白血病发生。J Clin Invest 2008; 118:3143-50。12)Cartier N,Hacein-Bey-Abina S,Bartholomae CC等。造血细胞基因疗法在X连锁性肾上腺肌营养不良症中使用慢病毒载体。Science 2009; 326:818-23。 13)Biffi A,Montini E,Lorioli L等。 慢病毒造血干细胞Science 2009; 326:818-23。13)Biffi A,Montini E,Lorioli L等。慢病毒造血干细胞
抽象预测和插值井之间获得3D分布的渗透性是用于保护模拟的具有挑战性的任务。无碳酸盐储层中的高度异质性和成岩作用为准确预测提供了重要的障碍。此外,储层中存在核心和井记录数据之间的复杂关系。本研究提出了一种基于机器学习(ML)的新方法,以克服此类困难并建立强大的渗透性预测模型。这项研究的主要目的是开发一种基于ML的渗透性预测方法,以预测渗透率日志并填充预测的对数以获得储层的3D渗透率分布。该方法涉及将储层的间隔分组为流量单位(FUS),每个储层单位都有不同的岩石物理特性。概率密度函数用于研究井日志和FUS之间的关系,以选择可靠的模型预测的高加权输入特征。已实施了五种ML算法,包括线性回归(LR),多项式回归(PR),支持矢量回归(SVR),决策树(DET)和随机森林(RF),以将核心渗透性与有影响力的孔集成与有影响力的孔原木以预测渗透率。数据集随机分为训练和测试集,以评估开发模型的性能。对模型的超参数进行了调整,以提高模型的预测性能。为了预测渗透率日志,使用了两个包含整个重点毒的关键井来训练最准确的ML模型,以及其他井来测试性能。的结果表明,RF模型优于所有其他ML模型,并提供最准确的结果,其中调整后的确定系数(R 2 ADJ)在预测的渗透率和核心渗透率之间的训练集为0.87,对于测试集,平均绝对误差和平均正式误差(MSSE)的平均误差和0.32和0.19和0.19和0.19和0.19,均为0.82。据观察,当在包含整个储层FUS的井上训练RF模型时,它表现出较高的预测性能。这种方法有助于检测井的孔原木和渗透率之间的模式,并捕获储层的广泛渗透率分布。最终,通过高斯随机函数模拟地统计学方法填充了预测的渗透率日志,以构建储层的3D渗透率分布。研究成果将帮助ML的用户对适当的ML算法做出明智的选择,以在碳酸盐储层表征中使用,以进行更准确的通透性预测,并使用有限的可用数据进行更好的决策。
关于 MPS 基础物理科学研究是 MPS 支持工作的核心主题。MPS 科学的核心领域(天文科学、化学、材料研究、数学科学和物理学)继续推进和转化知识,并支持下一代科学家的发展。MPS 资助的科学涵盖范围广泛:从研究过的最小物体和最短时间尺度到宇宙大小和年龄的距离和时间尺度。MPS 继续培养和支持跨学科科学项目,这些项目的范围和复杂性各不相同,从个人研究人员奖励到大型多用户设施。个人研究人员和小团队获得大多数奖项,但中心、研究所和设施都是 MPS 资助研究不可或缺的一部分。这种学科融合和组织研究人员的各种方式使 MPS 能够投资于引人注目的基础科学,这些科学将支撑和推动未来技术的进步,并帮助支持未来几十年强劲的美国经济。通过其中心和研究所计划,MPS 将继续支持前沿科学和从事从基础科学到转化科学的研究的下一代科学家的发展。MPS 中心和研究所涵盖范围广泛,从解决基础数学挑战到开发新材料。研究工具和基础设施是 MPS 将继续资助的关键重点。天文科学、化学、材料研究和物理学领域的中型研究基础设施对于这些学科的发展仍然至关重要。大型研究基础设施也至关重要,并为与国际组织、其他联邦机构和私人基金会建立伙伴关系提供了机会,阿塔卡马大型毫米/亚毫米阵列 (ALMA)、双子座天文台、大型强子对撞机 (LHC) 和国家高磁场实验室等设施就是明证。大型强子对撞机 (LHC) 的升级工程于 2020 年 4 月开始建设,旨在为 NSF 资助的 LHC 探测器做好粒子加速器高亮度运行的准备,而 Vera C. Rubin 天文台项目正在推进智利塞罗帕琼峰顶的物理基础设施以及最先进的数据管理系统和有史以来建造的最大数码相机。丹尼尔 K. 井上太阳望远镜 (DKIST) 位于夏威夷毛伊岛的哈莱阿卡拉山顶,预计于 2021 年底完工,有望成为世界上最强大的太阳天文台。DKIST 在 2020 财年实现了一个关键里程碑,首次看到太阳光芒,以有史以来最高的分辨率拍摄到太阳表面的壮观图像。自 1990 年以来,它探测到引力波