在光催化应用方面,二维材料最近引起了人们的广泛关注。19,20此外,二维结构具有较大的表面积与体积比,可以创建额外的光催化反应位点,并且电荷载流子复合率低,导致其迁移到表面。21,22硅烯是一种二维六方晶格的单层硅结构,于2007年在理论上预测,并于2010年合成,23它拥有石墨烯的大部分优良电子特性。氢和硅烯的共价改性,称为硅烷(SiH),可以在布里渊区产生相当大的带隙,类似于石墨烯的带隙。24,25氢化消除了硅烯的导电性并产生了更稳定的结构,从而在可见光区域产生了较小的带隙,可用于光催化。多项研究表明,SiH具有合适的间接带隙和稳定的结构。 26 全氢化硅烯是一种良好的异质结复合材料,也已在实验和理论上进行了研究。27,28 由于高反应性的 Si-H 键可直接用作化学过程中的还原剂或反应物,因此它们特别受关注。29
摘要:电力电子系统对现代社会影响巨大。它们的应用旨在通过最大限度地减少工业化对环境的负面影响(如全球变暖效应和温室气体排放)来实现更可持续的未来。基于宽带隙 (WBG) 材料的功率器件有可能在能源效率和工作方面实现范式转变,而这些转变与基于成熟硅 (Si) 的器件相比毫无二致。氮化镓 (GaN) 和碳化硅 (SiC) 被视为最有前途的 WBG 材料之一,它们可以大大超越成熟 Si 开关器件的性能极限。基于 WBG 的功率器件可以在更高的开关频率下实现快速开关,同时降低功率损耗,因此可以开发高功率密度和高效率的功率转换器。本文回顾了流行的 SiC 和 GaN 功率器件,讨论了相关的优点和挑战,最后介绍了它们在电力电子中的应用。
本报告是由美国政府某个机构资助的工作报告。美国政府、其任何机构及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,亦不保证其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏爱。本文表达的作者的观点和意见不一定表明或反映美国政府或其任何机构的观点和意见。
“ ctusbdu(bmmjvn ojusjef ijhi fmfduspo npcjmjuz usbotjtupst(b/)&。5t bsf bu b qpjou pg sbqje pg sbqje hspxui hspxui hspxui hspxui i uif tuboebse(b/ ifufsptuvsft sfnbjo vopqujnj [fe gps nbyjnvn qfsgpsnbodf'ps uijt sfbtpo xf qspqptf qspqptf uif tijgu/ mbujops qspwf uif pvuqvu qpxfs boe uifsnbm nbobhfnfu pg *** ojusjefbnqmjàfst#fzpoe jnqspwmfonphu jmm jmm jmm bmmpx bmmpx bmmpx Ojdt 4ubuf pg uif dvssfou q diboofm'&5tnbuvsfàmufsjfdjpmwjbohmmz xjui ufhsbufe xjui xjui xjui bo“ m/(b/)& usjef fmfduspojdt nbz nbyjnj [f uifjhis qpfndpwmm ijhi nnvojdbujpo boe ijhi ijhi qpxfs mphjd bqqmjdbujpot
关于国际能源署《节能终端使用设备实施协议》(4E):节能终端使用设备技术合作计划(4E TCP)自 2008 年以来一直致力于支持各国政府协调有效的能源效率政策。14 个国家和一个地区已联合起来建立 4E TCP 平台,以交流技术和政策信息,重点是增加高效终端使用设备的生产和贸易。然而,4E TCP 不仅仅是一个信息共享论坛:它汇集了各种项目的资源和专业知识,旨在满足参与国政府的政策需求。4E 的成员发现这是对稀缺资金的有效利用,其成果比单个司法管辖区所能实现的更为全面和权威。4E TCP 是在国际能源署(IEA)的支持下成立的,是一个功能和法律上独立的机构。 4E TCP 的现有成员为:澳大利亚、奥地利、加拿大、中国、丹麦、欧盟委员会、法国、日本、韩国、荷兰、新西兰、瑞士、瑞典、英国和美国。
光谱不活跃、电绝缘和化学惰性是广泛用来描述云母和绿泥石等层状硅酸盐矿物的形容词。本文通过展示来自五种块状云母和绿泥石片岩的液体剥离纳米片的水悬浮液,推翻了上述观点。通过透射电子和 X 射线光电子能谱以及电子衍射确认了纳米片的质量。通过拉曼光谱,可以观察到以前未报告过的尺寸和层相关光谱指纹。当通过紫外可见光谱分析高产悬浮液(≈ 1 mg mL − 1 )时,所有层状硅酸盐的带隙( E g )都从块体的 ≈ 7 eV 窄化到单层的 ≈ 4 eV。不同寻常的是,带隙与纳米片的面积 (A) 成反比,这是通过原子力显微镜测量的。由于未记录的量子限制效应,随着纳米片面积的增加,纳米片的电子特性向半导体行为 (带隙 ≈ 3 eV) 扩展。此外,模拟 X 射线衍射光谱表明,初始带隙变窄的根本原因是晶格弛豫。最后,由于其同构取代离子范围广泛,层状硅酸盐纳米片表现出显著的制氢催化特性。
摘要 本章介绍了基于压电致动器的微/纳米定位器及其在保护生态系统生物多样性和实现可持续制造业方面的作用。这些定位器具有微/纳米分辨率的精确度,并且改进和辅助了繁殖和体细胞核移植,在保护濒危物种免于灭绝方面发挥着越来越重要的作用。研究表明,这些技术可能是我们减缓自然退化的关键因素。此外,压电驱动微/纳米定位器是附加精度提高系统的基础,该系统可以使过时的机床重新投入使用,只需进行微小改动,性能水平高于新机器。这避免了(并可以进一步防止)能源和材料的浪费,因为过时的机器或其主要部件否则将被丢弃。此外,压电驱动微定位器在振动辅助加工中起着重要作用,可降低能耗、提高产品质量并延长机器使用寿命。
小时量子与统计力学、波粒子对偶和薛定谔方程、自由和束缚粒子、准低维结构量子阱、线、点、低维系统的能带结构、量子限制、2D、1D 和 0D 结构中的态密度、异质结构和带隙工程、调制掺杂、应变层结构纳米级 MOSFET CMOS 技术的挑战、高 k 电介质和栅极堆栈、未来互连。MOSFET 作为数字开关、传播延迟、动态和静态功率耗散摩尔定律、晶体管缩放、恒定场缩放理论、恒定电压缩放、广义缩放、短沟道效应、反向短沟道效应、窄宽度效应、亚阈值传导泄漏、亚阈值斜率、漏极诱导势垒降低、栅极诱导漏极泄漏。
拓扑声学领域的灵感来源于凝聚态物质中拓扑绝缘体的发现,拓扑绝缘体是一类具有极不寻常电传导特性的材料。与传统半导体一样,拓扑绝缘体的特点是价带和导带之间存在电子能量间隙(带隙)。对于该带隙内的电子能量,拓扑绝缘体在其本体中不导电,因此得名。然而,任何有限的此类材料样本都必然支持沿其物理边界的传导电流;价带和导带的拓扑特征确保了这些边界电流的存在。因此,这些电流的存在与边界形状或不影响带隙拓扑的连续缺陷和瑕疵的存在无关。了解了这一特性,我们只需分析无限介质能带的拓扑特征,就能预测沿此类材料的任何有限样本边界流动的传导电流的存在(Thouless 等人,1982 年;Haldane,1988 年)。因此,这些电流对缺陷和无序表现出不同寻常的稳健性。电子自旋在定义这些材料的拓扑响应方面起着根本性的作用。
