成分谷物产品、加工谷物副产品、植物蛋白产品、碳酸钙、粗饲料产品、草料产品、植物油、磷酸一钙、盐、DL-蛋氨酸、丙酸钙(防腐剂)、氧化锰、硫酸锰、氧化锌、硫酸锌、硫酸铜、碘酸钙、硫酸亚铁、L-赖氨酸、柠檬酸压饼提取物、维生素 A 补充剂、维生素 D3 补充剂、维生素 E 补充剂、亚硫酸氢钠甲萘醌复合物、核黄素补充剂、烟酸补充剂、泛酸钙、硝酸硫胺素、维生素 B12 补充剂、生物素、盐酸吡哆醇、叶酸、氯化胆碱、里氏木霉干燥发酵产物、亚硒酸钠、锌氨基酸复合物、脱水毕赤酵母发酵提取物、天然和人工口味,d-alpha生育酚乙酸酯。
中链甘油三酯)、改性玉米淀粉、大豆油、椰子油、M. Alpina 油*、Schizochytrium Sp.油†、L-酪氨酸、L-亮氨酸、单甘油酯、M-肌醇、L-色氨酸、结冷胶、L-肉碱、叶黄素、矿物质(磷酸三钙、氯化镁、柠檬酸钾、氢氧化钾、柠檬酸钠、氯化钾、硫酸锌、硫酸亚铁、硫酸铜、硫酸锰)、维生素(抗坏血酸、氯化胆碱、烟酰胺、D-α-生育酚乙酸酯、D-泛酸钙、维生素 A 棕榈酸酯、盐酸硫胺素、盐酸吡哆醇、核黄素、维生素 D3、叶酸、D-生物素、叶绿醌、亚硒酸钠、β-胡萝卜素、氰钴胺素)和需要:磷酸二氢钾。 * ARA 的来源。
成分 鸡肉、鸡肉粉、玉米蛋白粉、酿酒米、黄玉米粉、小麦粉、植物油(中链甘油三酯来源)、玉米胚芽粉、大麦、天然香料、鱼油、干蛋制品、L-精氨酸、麦麸、鱼粉、磷酸一钙和磷酸二钙、氯化钾、盐、碳酸钙、L-赖氨酸盐酸盐、维生素 E、氯化胆碱、L-抗坏血酸-2-多磷酸盐(维生素 C)、硫酸锌、硫酸亚铁、烟酸(维生素 B-3)、维生素 A 补充剂、硝酸硫胺素(维生素 B-1)、硫酸锰、大豆油、泛酸钙(维生素 B-5)、维生素 B-12 补充剂、核黄素补充剂(维生素 B-2)、硫酸铜、盐酸吡哆醇(维生素 B-6)、大蒜油、叶酸(维生素 B-9)、亚硫酸氢钠甲萘醌复合物(维生素 K)、生物素(维生素 B-7)、碘酸钙、维生素 D-3 补充剂、亚硒酸钠。
缩写:SMA,α平滑肌肌动蛋白;AA,氨基酸;BME,Eagle基础培养基;BMP4,骨形态发生蛋白-4;BFP,蓝色荧光蛋白;CoQH2,还原辅酶Q;CHP,氢过氧化异丙苯;DR,耐药;EBSS,Earle平衡盐溶液;EGF,表皮生长因子;FBS,胎牛血清;eIF2,真核起始因子2α;FACS,荧光激活细胞分选术;FITC,异硫氰酸荧光素;GAPDH,3-磷酸甘油醛脱氢酶;GFP,绿色荧光蛋白;GSH,谷胱甘肽;GSSG,谷胱甘肽二硫化物;GPX4,谷胱甘肽过氧化物酶4;HGF,肝细胞生长因子;HPLM,人血浆样培养基; iRFP,近红外荧光蛋白;Mel-MPM,黑色素瘤导向模块化生理培养基;MPM,模块化生理培养基;NAD,烟酰胺腺嘌呤二核苷酸;NAMPT,烟酰胺磷酸核糖转移酶;NAMPTi,烟酰胺磷酸核糖转移酶抑制剂;NEAA,非必需氨基酸;NHDF,正常人真皮成纤维细胞;PI,碘化丙啶;ROS,活性氧;Se,亚硒酸盐;SLC3A2,溶质载体家族 3 成员 2;SLC7A11,溶质载体家族 7 成员 11;xCT,胱氨酸/谷氨酸转运蛋白
过去 60 年,集成电路中晶体管数量的迅猛增长推动了电子技术的进步。因此,现代电子芯片包含数十亿个场效应晶体管 (FET),而最先进的硅 FET 由薄至 7 纳米(相当于 13 个原子层 1 )的结构构成。然而,像硅这样的三维材料在进一步减小厚度时,迁移率会急剧下降。此外,非晶态和粗糙的沟道/氧化物界面(也存在于先进的高 k 技术中,如二氧化铪,HfO 2;k,介电常数)的影响变得越来越有害。因此,仅仅依靠标准硅技术进一步缩小现代电子设备的体积正在慢慢停滞 2 。继续缩小设备体积最有希望的解决方案之一是使用具有原子级厚度的二维 (2D) 沟道 3、4 的 FET,它们本质上提供亚纳米级的沟道厚度。然而,2D 技术缺乏能像二氧化硅 (SiO 2 ) 与硅一样有效的绝缘体。理想情况下,这种绝缘体必须能够扩展到等效氧化物厚度 (EOT;与某种替代绝缘体产生相同电容的 SiO 2 厚度) 的单个纳米以下,并且质量足够高以保持低漏电流。此外,绝缘体应该与通道具有明确的界面,绝缘体缺陷数量少,并且介电稳定性高。Hailin Peng 和同事在《自然电子学》上撰文,表明高迁移率 2D 半导体 Bi 2 O 2 Se 可以共形氧化为原子级薄的天然氧化物亚硒酸铋 (Bi 2 SeO 5 ),随后可用作 FET 5 中的栅极绝缘体。目前,六方氮化硼 (hBN) 被广泛认为是二维电子器件最有前途的绝缘体,因为它是结晶的,并且具有干净的范德华界面 6 。然而,hBN 不太可能满足低漏电要求