在2021年,据估计,诸如聚乙烯基氯和环氧树脂之类的建筑应用是氯的最大需求。目前,氯气被氯 - 烷烃制造设施广泛用于衍生化学生产,这一过程称为圈养消耗。总生产的一部分(估计为36亿千克或2022年的32%)注定在商家市场上出售。商人市场的氯需求,氧化丙烷的产量占百分比最大的。水处理(包括工业应用)是商户市场氯第二大使用。据估计,在2022年,所有国内生产中的水处理(包括工业应用)将占9%(1.039 m kg,11.4 b kg),占商户市场购买的氯的27.2%。市政废水和饮用水应用预计将占水处理需求的60%(628 m kg),约占所有国内生产的氯的消费量的5%。预期的628 m千克对水处理应用的需求,市政废水和饮用水的需求分别为67%和33%(Kreuz等,2022)。
对形成碳键的新方法的探索,导致结构新颖的桥接化合物的合成对科学界而言至关重要。许多桥接化合物是众所周知的天然产物和生物活性支架的部分结构,并且也是许多反应中的剂量[1](图1)。桥接分子的结构唯一性,例如它们的设计,异常对齐和诱人的化学反应,具有较小的桥梁群体鼓励我们检查其独特的有机,猜想和光谱研究[2]。设计一种连贯的策略来访问桥接化合物的综合策略的令人震惊的综合挑战,该化合物具有非保障的热力学稳定性,在合成化学家中产生了好奇心[3]。在桥位的杂原位的紧张的杂循环部分的合成是一项迷人的合成工作,由于兴高采烈以及许多有用的特性,与碳环糖化合物相比,由于兴高采烈以及许多有用的特性,它一直在获得大量的cur现利息[4]。在1928年,奥托·迪尔斯(Otto Diels)教授和他的学生库尔特·奥尔德(Kurt Alder)报告了关于合成的[4Þ2]环加成反应的开创性工作
磺基序已被广泛地嵌入在药物分子,1个农产品,2和功能材料中。3图1,例如,显示了由FDA批准的药物的含硫分子的取样。1由于磺酰基群的显着重要性,其构造的合成策略的发展引起了人们的关注。4从经典中,磺基衍生物是由具有强氧化剂的相应硫化物的氧化制备的,这可能导致兼容兼容的问题(方案1A)。5直接SO 2插入策略6构成了合成磺基衍生物的直接方法;但是,因此2气是有毒的,不容易处理。近年来,使用SO替代物(方案1b)7,例如Dabso,8元甲硫酸盐,9和Sogen 10。尽管这些方法在各种过程中取得了成功,但由于这些盐的溶解性和/或吸湿性问题,仍然存在与使用这些盐有关的缺点。硫酸及其盐已成为用于构建含有磺基产品的磺酰基试剂,11,但它们的制备和纯化限制了其应用。与磺酸制剂的众多文献相反,硫酸盐的原位产生和/或功能化已被较少注意作为进入磺酰基化合物的替代途径。
锂硫电池 (LSB) 是后 LIBs 技术最有前途的候选者之一。[10–12] 在 LSB 中,通过硫和锂之间的多电子反应可实现 1675 mAh g −1 的理论容量。放电过程中会出现两个不同的电压平台。在较高的电压平台(约 2.3 V)下,S 的最稳定的同素异形体 S 8 的环状结构被破坏,形成长链多硫化锂;一开始是 Li 2 S 8 ,然后进一步还原为 Li 2 S 6 和 Li 2 S 4 。在较低的电压平台(约 2.1 V),长链多硫化锂进一步还原为 Li 2 S 2 和 Li 2 S。[13,14] 除了理论容量高之外,地球上 S 的储量丰富、价格低廉以及环境友好等特性使得 LSB 比 LIB 更便宜。然而,LSB 的工业化进程中仍存在一些障碍。[15,16] 首先,S 和放电产物 Li 2 S 本质上都是绝缘的(≈ 5 × 10 − 30 S cm − 1)。电极材料的低电导率会影响电池的电化学性能,尤其是在高电流密度下。其次,充放电过程中体积变化大会导致安全性和稳定性问题。由于 S 和 Li 2 S 的密度差异,当 S 转移到 Li 2 S 时,体积变化将高达 75%。最后,臭名昭著的穿梭效应会进一步导致性能下降。充放电过程中形成的多硫化锂可溶于电解液。这些中间体在正极和负极之间穿梭,并通过公式(1)和(2)所示的化学反应或电化学反应与电极材料发生反应,导致锂负极的消耗和“死”硫的形成,最终导致库仑效率和稳定性降低。
毒理学特征是根据修订的1980年综合环境响应,补偿和责任法(CERCLA或SUPERFUND)开发的。CERCLA第104(i)(1)条指示ATSDR管理员“……影响并实施与健康相关的机构”的法规。 这包括为CERCLA国家优先级清单(NPL)设施中最常见的危险物质制备毒理学特征,并构成了ATSDR和EPA确定的对人类健康的最重要潜在威胁。 修订后的Cercla第104(i)(3)条指示ATSDR的管理员为清单上的每种物质准备毒理学概况。 此外,ATSDR有权准备毒理学特征,以便在NPL上找不到的物质,以“……建立和维持对CERCLA物质健康影响的库存”,根据CERCLA第104(i)(1)(b)条的毒性物质对健康影响的研究”,以对第104条的咨询要求进行响应,以响应第104条(否则),并进行了措施。CERCLA第104(i)(1)条指示ATSDR管理员“……影响并实施与健康相关的机构”的法规。这包括为CERCLA国家优先级清单(NPL)设施中最常见的危险物质制备毒理学特征,并构成了ATSDR和EPA确定的对人类健康的最重要潜在威胁。修订后的Cercla第104(i)(3)条指示ATSDR的管理员为清单上的每种物质准备毒理学概况。此外,ATSDR有权准备毒理学特征,以便在NPL上找不到的物质,以“……建立和维持对CERCLA物质健康影响的库存”,根据CERCLA第104(i)(1)(b)条的毒性物质对健康影响的研究”,以对第104条的咨询要求进行响应,以响应第104条(否则),并进行了措施。
非小细胞肺癌 (NSCLC) 是全球癌症相关发病率和死亡率的主要原因之一。需要新的治疗和药物再利用策略。胞嘧啶阿糖苷 (AraC) 是一种 S 期抑制剂,历史上用于治疗白血病。以前,AraC 并未被研究作为 NSCLC 的治疗选择。我们探索了一种针对 S 期和线粒体途径的新型体外辅助治疗概念。描述了一种合成途径,用于生成带有唑、二唑和三唑部分的新型线粒体损伤性 N-(4-氯苯基)-γ-氨基酸衍生物。对所得化合物在已描述的 A549 细胞上的抗癌活性进行了评估。五种化合物表现出与胞嘧啶阿糖苷 (AraC) 相当的令人信服的抗癌活性。最有前景的化合物 7g (IC 50 = 38.38 µ M) 含有 3,4-二氯苯基部分,能够诱导线粒体损伤,导致显著 (p < 0.05) ROS 产生和 ATP 合成抑制。与 AraC 和 7g 单一疗法或 UC 相比,7g 与 AraC 协同作用并显著降低 A549 活力。AraC 与 7g 联合使用后对 A549 活力的细胞毒性作用与阿霉素单一疗法相似。这些结果表明,7g 可以作为增强标准化疗药物活性的辅助药物进行探索。需要进一步研究以更好地了解 N-(4-氯苯基)-γ-氨基酸的安全性、有效性和精确的细胞靶点。