空军研究实验室——俄亥俄州代顿市通过自主实验实现碳纳米管的规模合成——2,200,000 美元空军研究实验室正在开发一种反应器,通过燃烧过程高产出高质量碳纳米管。与同类方法相比,该技术将使生产率提高 100 倍。这些纳米管可用于未来的能源应用和零排放氢气生产。拟议的技术将适用于电池和轻质高性能复合材料。亚的斯能源——马萨诸塞州萨默维尔模拟地质氨作为主要能源资源——4,500,000 美元亚的斯能源正在开发模拟地质氨技术,使氨成为主要能源资源。拟议的技术将利用石油和天然气技术使亚铁资源与工程流体反应生成氨。亚的斯能源将结合实验结果与计算模型,从批量反应扩展到现场试点演示。他们的方法通过利用地球自然资源的化学和热潜力,克服了当前氨生产途径的高能源成本和碳强度挑战。ALUMINIO INC.——加利福尼亚州圣卡洛斯用于低成本、可持续太瓦时能量存储的新型集电器——3,000,726 美元Aluminio Inc. 正在开发新型集电器技术,以降低基于磷酸铁锂 (LFP) 的锂离子电池的生产成本。该技术将用由轻质和丰富的贱金属组成的合金箔取代 LFP 电池阳极侧的铜作为集电器。拟议的技术将适用于所有商业相关的锂离子电池,最终用途应用包括电动汽车和电池储能系统。 CIRCULARITY FUELS – 加利福尼亚州雷德伍德城 电力或地质氢与合成天然气之间的高效、紧凑转换 – 3,600,000 美元 Circularity Fuels 正在开发新型反应器和催化剂技术,目的是利用清洁能源将生物或大气二氧化碳 (CO 2 ) 流转化为碳中性燃料。拟议的技术将有效捕获大气中的 CO 2 并将其转化为合成天然气。拟议的技术将适用于高纯度甲烷、推进剂级甲烷、可再生天然气、沼气升级和液体燃料生产(例如可持续航空燃料、低硫柴油)市场。COLDQUANTA, INC. DBA INFLEQTION – 科罗拉多州博尔德 增强中性原子计算机以优化能量输送 – 6,165,189 美元 Infleqtion 正在开发量子计算系统和算法工具集,目的是提高能源网的效率。项目团队将提供比传统方法更高质量的机组组合解决方案,其规模和运行时间与能源行业工作流程一致。所提出的技术将适用于能源行业,实现能源效率、稳定性和智能用电。
腔量子电动力学通过将谐振器与非线性发射器 1 耦合来探索光的粒度,在现代量子信息科学和技术的发展中发挥了基础性作用。与此同时,凝聚态物理学领域因发现底层拓扑 2 – 4 而发生了革命性的变化,这种拓扑变化通常源于时间反演对称性的破缺,例如量子霍尔效应。在这项工作中,我们探索了拓扑非平凡的 Harper-Hofstadter 晶格 5 中 transmon 量子比特的腔量子电动力学。我们组装了铌超导谐振器 6 的晶格,并通过引入亚铁磁体 7 来破缺时间反演对称性,然后再将系统耦合到 transmon 量子比特。我们用光谱方法分辨晶格的各个体模式和边缘模式,检测激发的 transmon 和每个模式之间的 Rabi 振荡,并测量 transmon 的合成真空诱导兰姆位移。最后,我们展示了利用 transmon 计数拓扑能带结构每个模式内单个光子 8 的能力。这项工作开辟了实验手性量子光学 9 领域,使微波光子的拓扑多体物理成为可能 10,11,并为背向散射弹性量子通信提供了途径。由光构成的材料是量子多体物理学的一个前沿 12 。依靠非线性发射器来产生强光子 - 光子相互作用和超低损耗超材料来操纵单个光子的属性,这个领域探索了凝聚态物理和量子光学的接口,同时生产用于操纵光的设备 13,14。最新研究成果表明,光子在具有拓扑特性15的光子中会经历圆形时间反转破缺轨道,这为探索诸如(分数)量子霍尔效应2、3、Abrikosov晶格16和拓扑绝缘体4等固态现象的光子类似物提供了机会。在电子材料中,圆形电子轨道是由磁或自旋轨道耦合4产生的。与电子不同,光子是电中性物体,因此不会直接与磁场耦合。因此,人们正在努力为光子生成合成磁场,并更广泛地探索在合成光子平台中拓扑量子物质的概念。光学和微波拓扑光子学都在这一领域取得了重大进展。在硅光子学 17、18 和光学 19、20 中,通过在偏振或空间模式中编码伪自旋,已经实现了合成规范场,同时保持了时间反转对称性。在射频和微波超材料中,已经探索了具有时间反转对称性 21、22 和破缺时间反转对称性的模型,其中时间反转对称性破缺由以下因素引起:
许多外膜受体,蛋白质和结肠蛋白具有共识氨基酸序列,即tonb盒,位于其氨基末端附近(16、19)。这些膜受体与TONB依赖性过程有关,例如摄取亚铁植物和维生素B12,并通过噬菌体(例如480和Ti)成功感染(有关综述,请参见参考文献14)。B组菌菌素具有一个TONB盒,也需要TONB蛋白的吸收(1,15)。 在tonb基因中的突变(4、8、12、17、18)的突变可以抑制tonb盒构成的序列和遗传学证据的存在,这是导致tonb盒子代表TONB盒子代表TONB蛋白与各种受体蛋白相互作用的位点的假设(8)。 检验该假设的一种方法是确定从TONB框中得出的寡肽是否可以抑制TONB依赖性过程。 因此,我们用合成的tonb盒五肽(glu-thr-val-ile-val)处理了大肠杆菌细胞,该肽是源自fhue受体的,它含有fhue受体,该受体与铁含量相结合。 然后,在这种五肽存在的情况下,我们阐述了几个依赖TONB的过程。 将两个无关的五肽用作对照。 TONB盒五肽(116 mg)购自耶鲁大学的蛋白质和核酸化学设施。 它以粉末形式存储在室温下,并根据需要以每毫升浓度为1 mg的五肽溶解在水中。 分别为Leu-Pro-Pro-Ser-Arg和Val-His-Leu-th-Pro,两个对照肽PP1和PP2分别为PP1和PP2。B组菌菌素具有一个TONB盒,也需要TONB蛋白的吸收(1,15)。在tonb基因中的突变(4、8、12、17、18)的突变可以抑制tonb盒构成的序列和遗传学证据的存在,这是导致tonb盒子代表TONB盒子代表TONB蛋白与各种受体蛋白相互作用的位点的假设(8)。检验该假设的一种方法是确定从TONB框中得出的寡肽是否可以抑制TONB依赖性过程。因此,我们用合成的tonb盒五肽(glu-thr-val-ile-val)处理了大肠杆菌细胞,该肽是源自fhue受体的,它含有fhue受体,该受体与铁含量相结合。然后,在这种五肽存在的情况下,我们阐述了几个依赖TONB的过程。将两个无关的五肽用作对照。TONB盒五肽(116 mg)购自耶鲁大学的蛋白质和核酸化学设施。它以粉末形式存储在室温下,并根据需要以每毫升浓度为1 mg的五肽溶解在水中。分别为Leu-Pro-Pro-Ser-Arg和Val-His-Leu-th-Pro,两个对照肽PP1和PP2分别为PP1和PP2。他们被购买了密苏里州圣路易斯的Froty Sigma Chemical Co.pp1和pp2的处理方式与TONB盒五肽的方式相同。对大肠杆菌的保护免受TONB盒五肽的致命作用。colicins b和ia与铁调节的外膜蛋白FEPA和CIR结合,并明显地恢复,并需要TONB蛋白进入细胞(1,15)。由于这些结肠蛋白包含一个TONB盒(11,19),因此我们测试了TONB盒五肽保护大肠杆菌免受结肠蛋白杀死的能力。大肠杆菌的结型菌株是从K. hantke获得的。colicins(7)。大肠杆菌
4植物分子生物学和生物技术部,COA,IGKV,Raipur(CG)摘要:背景:在Rainout庇护所中进行了一个实验,其中包括五种ininda rice的五种品种/基因型,暴露于不同浓度的两种不同形式的Iron viz。 视觉评分量表用于筛选基因型和过量铁对不同的营养性状的影响,在不同的营养性状上,发现根重量和芽量对两种形式的过量铁浓度和铁对不同基因型的影响更敏感。 主体:在本实验中,五种含义米的变种/基因型,在两种不同形式的铁效率的不同浓度下暴露于不同的铁(FESO 4)和铁(FECL 3)。在两种不同形式的铁,纤毛形式的毒性是有毒的,而不是铁含量较高的氯化物,而没有智力有毒的毒性有毒。 在视觉评分的基础上,我们确定了4种耐受性的基因型(Dagad Deshi,IBD-1,RRF 127和RRF 105)和Swarna是形成铁铁和铁铁的易感基因型。 Swarna和IBD-1的十字架用于F 4代的开发,并根据从F 4代获得的基因型和表型数据确定QTL。 使用间隔映射(IM)方法确定了总共13个QTL。 这些QTL是基于R 2或表型方差的主要QTL和次要QTL(PVE%)。 在复合间隔映射方法中,总共检测到二十四个主要和次要QTL,其中十个是主要的QTL。 (Bouman等,2002)。4植物分子生物学和生物技术部,COA,IGKV,Raipur(CG)摘要:背景:在Rainout庇护所中进行了一个实验,其中包括五种ininda rice的五种品种/基因型,暴露于不同浓度的两种不同形式的Iron viz。视觉评分量表用于筛选基因型和过量铁对不同的营养性状的影响,在不同的营养性状上,发现根重量和芽量对两种形式的过量铁浓度和铁对不同基因型的影响更敏感。主体:在本实验中,五种含义米的变种/基因型,在两种不同形式的铁效率的不同浓度下暴露于不同的铁(FESO 4)和铁(FECL 3)。在两种不同形式的铁,纤毛形式的毒性是有毒的,而不是铁含量较高的氯化物,而没有智力有毒的毒性有毒。在视觉评分的基础上,我们确定了4种耐受性的基因型(Dagad Deshi,IBD-1,RRF 127和RRF 105)和Swarna是形成铁铁和铁铁的易感基因型。Swarna和IBD-1的十字架用于F 4代的开发,并根据从F 4代获得的基因型和表型数据确定QTL。使用间隔映射(IM)方法确定了总共13个QTL。这些QTL是基于R 2或表型方差的主要QTL和次要QTL(PVE%)。在复合间隔映射方法中,总共检测到二十四个主要和次要QTL,其中十个是主要的QTL。(Bouman等,2002)。rm 152和RM 264染色体上的标记物在8个特征上的变化和芽中Fe +3含量的变化相关。结论:不同剂量的铁下与铁耐受性相关的各种特征的基因型之间的显着差异。通常,高剂量的铁对基因型具有毒性作用。在铁铁的来源中,铁的毒性更具毒性,但没有螯合剂的铁含量高于铁的毒性。根重量和芽重对过多的铁关键字更敏感:水稻,铁毒性,耐受性,铁浓度,QTLS1。简介稻米是印度的杰出农作物,是世界各地人民的主要谷物和主食之一。印度是世界上最大的水稻生产商之一,占全世界水稻生产的20%,含有高营养价值和热量价值。大部分土地约有1.29亿公顷土地都属于水稻种植,但存在主要的毒性和营养不足问题,据报道,其占全世界造成了1亿公顷土地的造成。(Becker and Asch 2005)。铁是一项重要的微量营养素,诸如叶绿素合成,叶绿体的结构和功能等许多作品,在光合作用过程中有助于光合作用,叶绿素合成,呼吸,氮固定,固定性,摄取机制(Kim and Rees,1992)。(Fageria等人因此,有氧大米通常患有微量营养素缺乏症,主要是吸收铁以两种形式进行,第一一种亚铁(Fe +2)和第二个铁离子((Fe +3),但铁铁(Fe 2+)离子主要吸收了铁的形式,它可能会导致营养失调或营养障碍状况,而在植物中造成了损害状态,并且在低地毒性中发现了更常见的毒性, ,2006年和Fageria等,1987)。另一方面,铁的铁的形式已通过螯合剂(植物剂)(Phytosiderphores)在植物根膜上运输,并且这种吸收通常在高地状态下发生,但这是低吸收离子的。,2006年和Fageria等,1987)。另一方面,铁的铁的形式已通过螯合剂(植物剂)(Phytosiderphores)在植物根膜上运输,并且这种吸收通常在高地状态下发生,但这是低吸收离子的。