本文介绍了亚音速单AFT发动机(Susan)Listabilitable研究工具(SARV)机翼结构的高级概述。为机翼的结构布局做出了唯一的设计注意事项,以包括电池的存储空间,分布式电动发动机以及在货物盒中托运机翼的要求。将讨论机翼结构开发过程,包括机翼内部结构设计演变,制造示范车辆的制造,机翼外霉菌线设计,机翼内部结构和机翼皮肤的整合,以及最终将机翼与机身结构集成。此外,将讨论机翼皮肤设计的开发,同时突出机翼皮肤制造示范面板以及用于材料表征的复合测试。
目前,SpaceX 对猎鹰 9 号和重型火箭的第一级采用返回发射场 (RTLS) 和近程着陆 (DRL) 方法,这需要大量燃料用于减速和着陆。涡扇发动机驱动的返回飞行技术(如带翼 LFBB)效率更高,但需要额外的推进系统及其燃料,这也会增加该级的惰性质量。一种完全不同的创新方法可使性能更好的 RLV 级返回,即获得专利的“空中捕获” (IAC) [1]:带翼可重复使用级将在空中被捕获并拖回发射场,此阶段无需任何自身的推进系统 [2]。图 1 显示了可重复使用级的完整操作 IAC 循环示意图。发射器升空时,捕获飞机正在近程会合区等候。在完成 MECO 后,可重复使用的带翼级与运载火箭的其余部分分离,然后沿弹道飞行,很快到达密度更大的大气层。在 20 公里左右的高度,它减速至亚音速,并在滑翔飞行路径中迅速下降。此时,可重复使用的返回级通常必须启动最后的着陆方法或必须启动其辅助推进系统。不同的是,在空中捕获方法中,可重复使用的返回级由一架装备齐全的捕获飞机(很可能是全自动的,也可能是无人驾驶的)等待,该捕获飞机提供足够的推力来牵引具有限制升阻比的带翼发射级。整个机动过程在几千米的高度完全亚音速 [3]。成功连接两辆运载火箭后,带翼可重复使用的返回级由大型运载飞机拖回发射场。靠近机场时,返回级从牵引机上释放,并像传统滑翔机一样自动滑行到着陆跑道。
L-159 飞机项目是在对 21 世纪初捷克空军的实际情况和需求进行详细分析后提出的。考虑到 20 世纪 90 年代初捷克共和国的政治取向,并基于军事技术和经济分析,决定利用捷克航空工业的生产和开发能力,逐步用北约兼容技术重新装备过时的飞机技术。经过时间和经济方面的分析,决定选择一种轻型多用途亚音速战术战斗机 L-159(ALCA - 先进轻型战斗机)。该飞机的概念基于利用 L-39/59 飞机系列的优势和传统,并集成最先进的推进动力装置、航空电子设备和武器系统,以实现合理的价格妥协。
背景 战斧导弹是一种高精度亚音速导弹,由喷气发动机驱动,可从海军水面舰艇和潜艇发射。它可以飞行 500 多英里,沿着预先设定的路线飞行,并跟随特定的地形特征到达目标。战斧对陆攻击导弹可以携带 1,000 磅级高爆弹或子弹药弹头。CALCM 也由喷气发动机驱动,但由 B-52 轰炸机发射。它使用来自全球定位卫星系统的信号按照预先设定的路线飞行,并携带常规爆炸弹头。CALCM 的精确度大约是战斧的一半。这两种武器都能够攻击固定或不易重新定位的陆地目标。战斧导弹的另一种变体被设计用于攻击海上船只。
摘要:快速成型技术 (RPT) 是一种可行的替代生产方法,通过创建要构建产品的数学 (CAD) 模型,制造业可以减少时间和成本。本综述的主要目的是为研究人员提供一个平台,让他们了解哪些快速成型材料和工艺足以构建风洞模型,以及这些模型是否满足亚音速测试的结构要求,同时仍具有以低预算生成用于教育目的 (初步设计研究) 的精确空气动力学数据所需的高保真度。随后,本文讨论了航空航天工业中快速成型的时间缩短和成本效益。关键词:航空航天、成本效益、时间缩短、快速成型技术、RPT 模型和风洞测试。
摘要:快速成型技术 (RPT) 是一种可行的替代生产方法,通过创建要构建产品的数学 (CAD) 模型,制造业可以减少时间和成本。本综述的主要目的是为研究人员提供一个平台,让他们了解哪些快速成型材料和工艺足以构建风洞模型,以及这些模型是否满足亚音速测试的结构要求,同时仍具有以低预算生成用于教育目的 (初步设计研究) 的精确空气动力学数据所需的高保真度。随后,本文讨论了航空航天工业中快速成型的时间缩短和成本效益。关键词:航空航天、成本效益、时间缩短、快速成型技术、RPT 模型和风洞测试。
对于高阿尔法研究飞行器飞行测试,HI-FADS 计算是在飞行后使用地面遥测的压力数据进行的。为了允许作为实际飞行系统的一部分进行自主操作,HI-FADS 算法被集成到一个实时系统中,该系统包括压力传感器、计算硬件、机载程序数据存储和飞机仪表系统接口。该系统,即实时刷新空气数据传感 (RT-FADS) 系统,在 NASA Dryden F-18 系统研究飞机 (SRA) 上进行了飞行测试。本文介绍了 RT-FADS 测量系统,包括基本测量硬件、空气数据参数估计算法和确保算法对传感器故障具有容错性的冗余管理方案。介绍了系统校准方法以及亚音速、大迎角和超音速飞行状态下系统性能的评估。
对于高阿尔法研究飞行器飞行试验,HI-FADS 计算是在飞行后使用遥测到地面的压力数据进行的。为了能够作为实际飞行系统的一部分自主运行,HI-FADS 算法被集成到一个实时系统中,该系统包括压力传感器、计算硬件、机载程序数据存储和飞机仪表系统接口。该系统即实时刷新空气数据传感 (RT-FADS) 系统,在美国宇航局德莱顿 F-18 系统研究飞机 (SRA) 上进行了飞行测试。本文介绍了 RT-FADS 测量系统,包括基本测量硬件、空气数据参数估计算法和确保算法对传感器故障具有容错性的冗余管理方案。本文介绍了系统校准方法以及亚音速、大攻角和超音速飞行状态下的系统性能评估。
摘要 在本文中,我们提出并验证了一种用于模拟航空航天应用的新型稳定可压缩流有限元框架。该框架由基于流线迎风/Petrov-Galerkin (SUPG) 的可压缩流 Navier-Stokes 方程、充当壁面函数的弱强制本质边界条件和充当激波捕获算子的基于熵的不连续性捕获方程组成。针对从低亚音速到跨音速流态的各种马赫数测试了该框架的准确性和稳健性。对 NACA 0012 翼型、RAE 2822 翼型、ONERA M6 机翼和 NASA 通用研究模型 (CRM) 飞机周围流动的二维和三维验证案例进行了气动模拟。将从所有案例的模拟中获得的压力系数与实验数据进行了比较。计算结果与实验结果一致性较好,证明了本文提出的有限元框架用于飞机气动模拟的准确性和有效性。
国际民用航空组织正在考虑为未来的超音速民用飞机制定新的环境标准。NASA 通过分析几种设想中的近期超音速运输机来支持这项工作。NASA 对这些运输机的性能、噪音和废气排放预测正被用于一项更大规模的研究,该研究将确定从本世纪开始向机队增加超音速飞机对全球环境和经济的影响。本文重点介绍了最大起飞总重量为 55 吨的超音速公务机。还讨论了重量为 45 吨的小型公务机。这两架飞机都使用源自通用当代商用亚音速涡扇核心的超音速发动机。使用 NASA 工具预测飞机性能、机场附近噪音和废气排放。还研究了这些飞机在商业空域的一些预期行为和要求。介绍了噪声对系统不确定性的敏感性,并讨论了替代发动机研究。