1 劳伦斯伯克利国家实验室物理部,加利福尼亚州伯克利 94720,美国 2 马里兰大学物理系,马里兰基础物理中心和 NSF 稳健量子模拟研究所,马里兰州帕克分校,美国 20742 3 威斯康星大学物理系,威斯康星州麦迪逊 53706,美国 4 洛斯阿拉莫斯国家实验室 T-2,新墨西哥州洛斯阿拉莫斯 87545,美国 5 费米国家加速器实验室,伊利诺伊州巴达维亚 60510,美国 6 芝加哥大学恩里科费米研究所,伊利诺伊州芝加哥 60637,美国 7 芝加哥大学卡夫利宇宙物理研究所,伊利诺伊州芝加哥 60637,美国 8 芝加哥大学物理系,伊利诺伊州芝加哥 60637,美国 9 伊利诺伊大学物理系、伊利诺伊州宇宙高级研究中心和伊利诺伊州量子信息科学与技术中心,厄巴纳,伊利诺伊州 61801,美国 10 QuEra Computing Inc,波士顿,马萨诸塞州 02135,美国 11 萨里大学数学系,吉尔福德,萨里 GU2 7XH,英国 12 石溪大学物理与天文系核理论中心,纽约 11794-3800,美国 13 布鲁克海文国家实验室物理系,厄普顿,纽约 11973,美国 14 彭焕武基础理论研究中心,安徽合肥 230026,中国 15 中国科学技术大学理论研究交叉学科中心,安徽合肥 230026,中国 16 芝加哥大学普利兹克分子工程学院、芝加哥量子交换中心和 Kadanoffi 理论物理中心,伊利诺伊州 60637,美国 17 qBraid Co.,哈珀考特5235,伊利诺伊州芝加哥 60615,美国 18 哈佛大学物理系,马萨诸塞州剑桥 02138,美国 19 爱荷华大学物理与天文系,爱荷华州爱荷华市 52242,美国 20 杜克大学杜克量子中心,北卡罗来纳州达勒姆 27701,美国 21 杜克大学电气与计算机工程系,北卡罗来纳州达勒姆 27708,美国 22 杜克大学物理系,北卡罗来纳州达勒姆 27708,美国 23 IonQ,Inc.,马里兰州学院公园 20740,美国 24 莱斯大学物理与天文系,德克萨斯州休斯顿 77005,美国 25 加州理工学院量子信息与物质研究所,加利福尼亚州帕萨迪纳 91125,美国 26 密歇根大学物理系,密歇根州安娜堡 48109,美国 27 理论日本理化学研究所先进研究中心量子物理实验室,日本埼玉县和光市 351-0198 28 日本理化学研究所跨学科理论与数学科学项目 (iTHEMS),日本埼玉县和光市 351-0198 29 特伦托大学物理系,via Sommarive 14, Povo, Trento I–38123,意大利
概述 光学时钟和频率标准是当今最精确的测量设备。但是,需要进一步改进以扩展其在基础计量学中的应用。该项目研究了激光冷却的捕获离子,作为下一代最高精度光学时钟的参考。虽然大多数带有捕获离子的精确光学时钟都是基于单个离子,但该项目研究了多达数百个离子的库仑耦合固体状态的集合,称为库仑晶体 (CC)。这种多离子方法为稳定性更高的时钟提供了更高的信噪比,并使得研究由碰撞或相互作用引起的微小频率偏移成为可能。研究了时钟和冷却剂离子的不同组合,并为对以前无法接近的系统进行精确测量提供了机会,例如具有光学核跃迁的高电荷氩离子和钍离子。主要成果是开发和实施了一系列不同离子(包括放射性同位素 229 Th)的加载和冷却方法。已经证明了双离子、两种物种时钟操作,并且已经对协同冷却的 115 In + 和 40 Ar 13+ 进行了精确的频率测定,其中后者的结果代表了高电荷离子精确测量的突破。需求 在 SI 单位制中,时间单位的实现处于关键位置,因为单位秒通过定义常数包含在七个基本单位中的六个的定义中。光学时钟研究的进展继续快速降低不确定度,目前评估范围为 10 -19。在准确性或稳定性方面具有特定优势的新参考系统需要研究新的实验方法以及相关的原子、分子和核数据。到目前为止,尚未详细研究过激光冷却的两种库仑晶体的结构和动力学,而控制和理解这种结构和动力学对于改进光学时钟和频率标准至关重要,并且对于优化协同冷却和光谱学也必不可少。协同冷却,即一种离子物种被激光冷却,另一种离子物种通过库仑相互作用冷却,可以研究更广泛的光学时钟相关离子。现有的光学时钟陷阱加载方法已针对单电荷物种进行了优化,并基于蒸发或激光烧蚀,结合电子撞击或光电离。然而,它引入了离子之间以及与离子阱的时间相关电场之间的额外库仑相互作用,并且需要进一步研究这些相互作用引起的频率偏移。对半衰期为 7920 年的放射性 229 Th 同位素的研究需要对 Th 3+ 和更高电荷态采用有效的加载方法,以便以最小源活动操作核光钟。离子钟会受到与背景原子和分子碰撞的影响,从而产生一系列影响,从频率偏移、亚稳态能级的激发或猝灭到通过电荷交换或化学反应导致的离子损失。为了可靠地排除或估计低 10 -18 能级的系统偏移,必须系统地研究碰撞的影响。在这个原子和核物理之间的新交叉学科领域中,所需的先进实验基础设施通常无法在一个高度专业化的实验室中使用。因此,需要便携式激光光谱设备。目标