“因此,据我们所知,它们是第一类以三阶响应为主要非线性响应的材料。此外,我们表明,由于这些材料中的自旋分裂较大,这种响应非常大。此外,交替磁体的弱自旋轨道耦合(与磁交换项相比)也出现在其非线性响应中,为这类新材料提供了一种新颖的传输特性,而这种特性以前仅限于寻找线性异常霍尔电导率。”
5.0 财务预测参考 5.1 提供三年财务预测并解释支持这些预测的基本假设,并按照附录 1 中列出的偿付能力 II 定量报告模板 (QRT) 和(仅适用于高影响力公司)国家特定模板 (NST) 中概述的格式提交。使用的货币应为公司的财务报告货币。
背景:动物和细胞中活性氧 (ROS) 的产生通常是由于暴露于低强度因素(包括磁场)所致。关于氧化应激的引发以及 ROS 和自由基在磁场影响中的作用的讨论大多集中在自由基诱导的 DNA 损伤上。方法:用分光光度法测定最终溶液中的 DNA 浓度。通过聚合酶链式反应对 8-氧鸟嘌呤 DNA 糖基化酶 (hOGG1) 基因的多态性变体 rs1052133 进行分型。采用酶联免疫吸附测定法测定 DNA 中的 8-氧鸟嘌呤水平。为了处理暴露于交变磁场的样品,作者开发了一种在交变磁场中自动研究生物流体的装置。用分光光度法测定 DNA 水溶液中过氧化氢的含量。结果:实验确定,在低频磁场作用下,水介质中过氧化氢的浓度增加3至5倍,会降低基因组材料对氧化修饰的抵抗力以及DNA中8-氧鸟嘌呤的积累。提出了低频磁场对核酸和蛋白质水溶液作用机理的模型,该模型满足水介质中活性氧物质转化的化学振荡器模型。该模型说明了DNA水溶液中发生的过程的振荡性质,并可以预测生物聚合物水溶液中过氧化氢浓度的变化,这取决于作用的低强度磁场的频率。结论:低强度磁场对生物系统影响的机制中关键因素是化学振荡器水环境中ROS的生成,其中物理和化学过程(电子转移,自由基的衰变和加成反应,自旋磁诱导的转化,最长寿命形式过氧化氢的合成和衰变)的竞争受磁场控制。
一些生活在宿主中的内共生体必须调节其宿主的免疫系统,以感染和持久。我们研究了细菌内共生植物对师生多细胞社会变形虫宿主的影响。divyba dictyostelium discoideum的聚集体包含类似于传统多细胞生物的免疫系统的前哨细胞的亚群。前哨细胞隔离并从D. distoideum骨料中丢弃毒素,并可能在防御病原体中起核心作用。我们测量了在paraburkholderia属中被细菌内共生菌感染的D. discoideum骨料中的前哨细胞的数量和功能。感染的D. Discoideum产生的前哨细胞较少,较少的持久性持续细胞,这表明Paraburkholderia可能会干扰其宿主的免疫系统。尽管哨兵细胞受损,但被感染的D. distoiDeum对溴化乙锭毒性的敏感性较小,这表明Paraburkholderia也可能对其宿主具有保护作用。相比之下,D.被Paraburkholderia感染的迪斯科医学会显示出对两种非亲生病原体的敏感性差异。我们的结果扩大了先前的工作,介绍了D. discoideum和Paraburkholderia之间复杂关系的另一个方面,该关系具有很大的潜力作为研究共生研究的模型。
量子纠缠是实现光量子信息处理 (QIP) 不可或缺的资源 [1-7]。传统上,通过利用符合波粒二象性的光的两个不相容方面之一来实现纠缠,两类方法同时发展起来。因此,这些发展导致了信息编码的两个不同方向,即使用有限维的离散变量 (DV) 状态(如光子数、时间箱和光偏振)[1-4] 或无限维希尔伯特空间的连续变量 (CV) 状态(如场正交分量)[5-7]。在实践中,这两种编码都展示了各自的优势,但也暴露了各自的弱点。由于不太担心光子丢失,涉及单光子的 DV 协议通常享有几乎单位保真度,但依赖于概率实现和高效的单光子探测器。相比之下,CV 替代方案使用电磁场的正交分量,具有明确的状态鉴别、无条件操作和完美的同差检测效率,但由于与真空耦合,存在光子损失和固有的低状态保真度。最近,人们做出了显著的努力 [8-22],利用这两种方法的优点来克服固有的个体局限性。在统一的混合架构中集成 DV 和 CV 技术方面取得的进展表明,我们能够分配和互连光学 DV 和 CV 量子态(或量子比特)。我们可以设想一个异构量子网络,要求在两种编码之间进行匹配的信息传输。因此,这些混合技术为实现可扩展的 QIP 和量子通信提供了新的思路。虽然将 DV 工具箱与 CV 框架相结合的努力早在二十年前就已开始用于生成非高斯状态,但它
摘要 强关联化学和材料系统的变分算法是近期量子计算机最有前途的应用之一。我们提出了变分量子特征值求解器的扩展,它通过求解由一组参数化量子态组成的子空间中的广义特征值问题来近似系统的基态。这允许系统地改进逻辑波函数假设,而不会显着增加电路复杂性。为了最大限度地降低这种方法的电路复杂性,我们提出了一种有效测量汉密尔顿量并在由与总粒子数运算符交换的电路参数化的状态之间重叠矩阵元素的策略。该策略使状态准备电路的大小加倍,但没有使其深度加倍,同时相对于标准变分量子特征值求解器增加了少量额外的两量子比特门。我们还提出了一种经典的蒙特卡罗方案来估计由有限数量的矩阵元素测量引起的基态能量的不确定性。我们解释了如何扩展此蒙特卡罗程序以自适应地安排所需的测量,从而减少给定精度所需的电路执行次数。我们将这些想法应用于两个模型强关联系统,即 H 4 的方形配置和己三烯 (C 6 H 8 ) 的 π 系统。
摘要 强关联化学和材料系统的变分算法是近期量子计算机最有前途的应用之一。我们提出了变分量子特征值求解器的扩展,它通过求解由一组参数化量子态组成的子空间中的广义特征值问题来近似系统的基态。这允许在不显著增加电路复杂性的情况下系统地改进逻辑波函数假设。为了最大限度地降低这种方法的电路复杂性,我们提出了一种有效测量哈密顿量的策略,并在由与总粒子数算子交换的电路参数化的状态之间重叠矩阵元素。该策略使状态准备电路的大小加倍,但没有使其深度加倍,同时相对于标准变分量子特征值求解器增加了少量额外的两量子比特门。我们还提出了一种经典的蒙特卡罗方案来估计由有限数量的矩阵元素测量引起的基态能量的不确定性。我们解释了如何扩展此蒙特卡罗程序以自适应地安排所需的测量,从而减少给定精度所需的电路执行次数。我们将这些想法应用于两个模型强关联系统,即 H 4 的方形配置和己三烯 (C 6 H 8 ) 的 π 系统。