摘要:自 2000 年以来,德国可再生能源产消者的数量迅速增加。然而,产消者的发展面临并将继续面临各种经济、社会和技术挑战,这引发了许多创新商业模式 (BM) 的出现。本文通过研究德国的两项 BM 创新(P2P 电力交易和小型产消者的聚集),借鉴商业模式和社会技术转型理论,丰富了以产消者为导向的 BM 的实证基础。采用了多种定性数据收集方法,包括文档分析和半结构化专家访谈。我们发现,虽然这两种 BM 都有可能解决德国可再生能源产消者发展面临的挑战,但小规模产消者对这两种 BM 的参与迄今为止一直有限。我们确定了在德国扩大这些 BM 以促进产消者发展的各种内部和外部驱动因素和障碍。尽管存在这些障碍,但针对产消者的聚合和集中式 P2P 也可能被公用事业等现有市场参与者所采用。另一方面,分散式 P2P 在扩大规模方面仍面临重大的内部和外部障碍。基于分析,本文针对已确定的驱动因素和障碍提出了政策建议。从理论角度来看,我们的研究结果提供了进一步的证据来挑战对利基参与者和现有参与者的二分法理解,后者通常被认为抵制激进的创新。
家庭和企业越来越多地参与自己的能源生产和储存。他们不仅消耗能源,还积极参与利用可再生能源生产能源,例如在屋顶安装太阳能光伏。这些所谓的产消者可以单独行动,也可以作为更广泛集体的一部分行动。无论哪种方式,他们的行动都有助于实现国家和欧盟的能源和气候目标,增强公民的权利,提高他们对从化石能源向可再生能源的持续转变的认识。欧盟许多国家的产消者数量正在增加,但欧盟公民对未来能源系统的贡献程度总体情况尚不明确。为了加深对整个欧盟+英国产消者主义整体潜力的了解,CE Delft 开发了 CEPROM 模型。该模型旨在回答以下问题:欧盟公民和第三产业企业(服务提供商)在多大程度上可以以产消者的角色为能源转型做出贡献? CEPROM 模型是 CE Delft 2016 年研究“欧盟能源公民的潜力”(CE Delft,2016 年)中使用的模型的更新版。它是在 PROSEU 项目中开发的,该项目是一项欧盟资助的研究项目,汇集了来自七个欧洲国家的 11 个项目合作伙伴,旨在使可再生能源生产消费者现象成为欧洲能源联盟的主流。本报告中介绍的大部分内容也在 PROSEU 的可交付成果 D5.2(关于地方、国家和欧盟情景的报告)中进行了报告。这份补充报告旨在提高欧盟范围内情景的可访问性,并将结果与 2016 年研究的结果进行比较。
共享经济改变了许多商业规则。其中一条规则就是企业的角色,以及——更为重要的是——消费者的角色,消费者可以扮演两个角色,既是提供者又是消费者,即“产消者”。因此,发挥共享经济力量的关键网络效应是让单边用户,即消费者(例如 Airbnb 客人)或提供者(例如 Airbnb 房东)增加第二个角色,既是提供者又是消费者,从而成为产消者(例如 Airbnb 客人和房东)。令人惊讶的是,没有研究调查过这一重要现象,也没有衡量单边用户如何成为产消者。一项对 305 名 Airbnb 用户的在线调查显示,信任和感激对服务提供者和消费者扮演各自角色成为产消者的意愿有显著的正向影响,感激和信任程度高的人成为产消者的意愿最高。然而,消费者和提供者在信任和感激如何影响他们成为产消者的意图方面存在显著差异。这项研究扩展了我们对信任和感激的理解,并强调了共享平台从单边用户池中创造产消者的潜力。此外,它还通过首次实证测量用户在共享经济中成为产消者的意图,为产消者和共享经济文献做出了宝贵贡献。我们讨论了研究结果对从业者的影响,并提出了未来的研究如何帮助利用共享经济。
注释: 1.B 级温度范围为 -40 ℃ ~+85 ℃。 2.这些数据是按最初设计的产品发布的。 3.一次校准实际上是一次转换,因此这些误差就是表 1 和表 3 所示转换噪声的阶数。这 适用于在期望的温度下校准后。 4.任何温度条件下的重新校准将会除去这些漂移误差。 5.正满标度误差包括零标度误差 ( Zero-Scale Error )(单极性偏移误差或双极性零误 差),且既适用于单极性输入范围又适用于双极性输入范围。 6.满标度漂移包括零标度漂移 (单极性偏移漂移或双极性零漂移)且适用于单极性及 双极性输入范围。 7.增益误差不包括零标度误差,它被计算为满标度误差——对单极性范围为单极性偏移 误差,而对双极性范围为满标度误差——双极性零误差。 8.增益误差漂移不包括单极性偏移漂移和单极性零漂移。当只完成了零标度校准时,增 益误差实际上是器件的漂移量。 9.共模电压范围:模拟输入电压不超过 V DD +30mV ,不低于 GND-30mV 。电压低于 GND-200mV 时,器件功能有效,但在高温时漏电流将增加。 10.这里给出的 AIN ( + )端的模拟输入电压范围,对 TM7706 而言是指 COMMON 输入 端。输入模拟电压不应超过 V DD +30mV, 不应低于 GND-30mV 。 GND-200mV 的输入 电压也可采用,但高温时漏电流将增加。 11.VREF=REF IN ( + )- REF IN ( - )。 12.只有当加载一个 CMOS 负载时,这些逻辑输出电平才适用于 MCLK OUT 。 13.+25 ℃时测试样品,以保证一致性。 14.校准后,如果模拟输入超过正满标度 , 转换器将输出全 1, 如果模拟输入低于负满标度, 将输出全 0 。 15.在模拟输入端所加校准电压的极限不应超过 V DD +30mV 或负于 GND - 30mV 。 16.当用晶体或陶瓷谐振器作为器件的时钟源时 (通过 MCLK 引脚 ), V DD 电流和功耗 随晶体和谐振器的类型而变化 (见“时钟和振荡器电路”部分)。 17.在等待模式下,外部的主时钟继续运行, 5V 电压时等待电流增加到 150 μ A , 3V 电 压时增加到 75 μ A 。当用晶体或陶瓷谐振器作为器件的时钟源时,内部振荡器在等待 模式下继续运行,电源电流功耗随晶体和谐振器的类型而变化 (参看“等待模式” 一节)。 18.在直流状态测量,适用于选定的通频带。 50Hz 时, PSRR 超过 120dB (滤波器陷波 为 25Hz 或 50Hz )。 60Hz 时, PSRR 超过 120dB (滤波器陷波为 20Hz 或 60Hz )。 19.PSRR 由增益和 V DD 决定,如下:
(1) 维数 一般取值 1 或 2 ,当 时,要求数据量 在数千点以上,但 过大不能保证序列具有相同 的性质; 一定时,若 ,需要较大才能取得 较好的效果,但是太大会丢失序列的许多细节信 息。 Pincus [ 14 ] 研究认为 比 效果好,可使 序列的联合概率进行动态重构时提供更详细的信 息。 (2) 用来衡量时间序列相似性的大小。如果 选得太小,估计出的统计概率会不理想;若选得 太大,会丢失时间序列中很多细节,达不到预期的 效果。 Pincus [ 14 ] 通过对确定性和随机过程的理论分 析及其对计算和临床应用的研究,总结出取值为 ( 为原始序列的标准差 ) 能得出有效 的统计特征。 (3) 表示输入数据点,一般取值为 100 ~ 5000 。因此根据上述原则,本文取 , 。根据实验研究发现当 时,不同 状态的脑电信号的样本熵并无太大差异;当 时,不同状态的脑电信号的熵值有明显差异。 因此 取值为 100 。即用长度为 100 点,间隔为 4 点 的滑动窗计算 EEG 在运动想象期 (2 ~ 6 s) 的样本 熵序列,然后求该序列的均值作为该 EEG 的样本 熵。 ERS/ERD 现象主要出现在 C3 和 C4 电极对应的 感觉运动区上,例如,右手运动想象时可观测到 C3 电极对应的感觉运动区 ERD 现象,左手运动想 象时可观测到 C4 电极对应的感觉运动区 ERD 现
TM1681 的系统时钟用来产生系统工作的时钟频率。LED 驱动时钟、系统时钟可以取自片内的 RC 振 荡器(256KHz)或者使用 S/W 设置由外部时钟输入。系统振荡器构造如图7 所示。当SYS DIS 命令被 执行时,系统时钟停止,LED 工作循环将被关闭(这条指令只能适用与片内 RC 振荡器)。一旦系统时 钟停止时,LED 显示为空白,时基也会丧失其功能。LED_OFF 命令用来关闭 LED 工作循环,LED 工作 循环被关闭之后,用 SYS DIS 命令节省电源开支,充当省电命令;如果是片外时钟源被选择的话,使 用 SYS DIS 命令不能够关闭振荡器以及执行省电模式。晶体振荡器可以通过OSC 管脚提供时钟频率, 在这种情况下,系统将不能进入省电模式。在系统上电时,TM1681 默认处在 SYS DIS 状态下。
当 HV 脚施加大于 40V 的电压时,内部高压电流源 对 V CC 脚外接的电容充电。为防止 V CC 在启动过程中短 路引起的功率损耗而使 IC 过热损坏,当 V CC 电压低于 1V 时,高压电流源的充电电流被限制为 I HV1 ( 1mA )。 当 V CC 大于 1V 后,高压电流源的充电电流变为 4mA_min , V CC 电压会迅速上升。当 V CC 超过启动水平 V CC_ON 时,高压启动电流源关闭。同时, UVLO 置高有 效, IC 内部电路开始工作。
当同步整流管完全开启后, VDS 两端压降完全跟 随次级电流 Is 。随着次级续流电流的减小 VDS 电压升 高,当 VDS 电压增大到 -30mV 时, Gate 驱动电路的 上管供电被关断 , 驱动电压随内部电阻及漏电流开始缓 慢降低;当 VDS 电压增大到 -20mV 时, Gate 驱动电 压会被钳位在 3.3V 左右。如果 VDS 电压增大到 -1mV 时, WS2260C 会在 25ns 的时间内快速将 GATE 电压 拉到 0V 。同时,关断屏蔽时间开始计时,此期间 GATE 保持低电平。直到 VDS 电压大于 2V ,退出关断屏蔽 计时。
摘要:对淡水虾消化道中降解胞外酶的需氧菌进行了分离。在羧甲基纤维素琼脂平板、淀粉琼脂培养基平板、明胶蛋白胨琼脂培养基平板上分离肠道细菌。在选择性培养基上根据胞外酶对分离的菌株进行定性筛选。根据形态学、生理学和生化特征对菌株进行鉴定,鉴定出芽孢杆菌种。通过使用明胶琼脂培养基、羧甲基纤维素培养基和刚果红CMC培养基以及针对不同酶的淀粉琼脂培养基进行菌落鉴定,分离出芽孢杆菌种。分离物能够水解蛋白质和碳水化合物,表明它们在鱼类营养中的重要性。
xxviii. 光电子学 xxix. 量子物理与器件 xxx. 三维集成电路 xxxi. 集成电路与微电子系统中的 ESD 防护设计专题 xxxii. 半导体光电器件与物理 xxxiii. 材料分析 xxxiv. 自旋电子学器件与磁存储器 xxxv. 纳米线与无结晶体管 xxxvi. 对于以上未列出的其他课程,请与学院管理人员协商批准。