中国和德国同为制造业大国,都设置了在本世纪中叶实现净零排放的气候目标,因此在清洁能源转 型领域面临着诸多共同挑战。尽管俄乌冲突全面爆发导致了全球范围的能源安全焦虑,德国仍在为实现 2045 年气候中性目标而加速布局可再生氢能政策和产业,以有效支撑本国的清洁能源转型进程。作为极 具气候雄心的发达经济体,德国在氢能经济领域的经验和教训可以帮助中国培育本国处于起步阶段的可再 生氢产业链。本文从氢能治理结构、提高氢能经济可行性措施和促进氢能应用等方面剖析了德国 2020 年 6 月发布的《国家氢能战略》。结合中国 2021 年 3 月发布的《氢能产业发展中长期规划( 2021-2035 年)》 以及电动汽车在中国的发展历程,作者基于中国具体国情提出了以下有针对性的政策建议: ● 为更好更快建立工业化规模的低碳氢供应链,中国应在充分利用本国现有化石燃料制氢产能的同时激 励可再生氢产能的持续增长。基于中国在电动车发展助力交通行业减排过程中所取得的经验,在氢能 产业链规模化之前,扩大氢能的下游需求与上游的低碳生产应该区分对待。扩大可再生氢产能应与鼓 励氢能大规模应用同时推进,从而在氢能产业链的上、下游之间产生正向激励效应。另一方面,本世 纪初以来全国燃煤发电装机的快速扩张已提前锁定了巨量煤炭需求,中国应以此为鉴,尽量避免进一 步扩大现有化石燃料制氢产能规模。 ● 氢能管制应更多侧重其能源属性。目前,中国仍将氢气作为危险化学品进行标识和监管,对其能源属 性没有予以充分考量和反映。对氢能的危化品定位在生产选址、道路运输、市场准入、终端应用以及 标准化等方面带来了一系列重大挑战。中国未来是否能够更加合理地对氢能进行定位是实现氢能规模 经济性的重要先决条件。 ● 可再生氢在工业深度脱碳中的作用应被优先考虑,并重点聚焦钢铁、石油化工和煤化工产业。鉴于可 再生氢在重工业应用中的巨大潜力,工业脱碳应成为中国实现可再生氢供应链规模经济性的重点领域。 除了尽快将排放密集型的工业行业纳入全国碳排放交易体系,还应考虑将德国乃至欧洲的创新政策和 金融政策工具针对中国国情进行定制和试点,尤其是绿钢的政府采购、碳差价合约和气候友好型原材 料的需求配额。 ● 为更好促进可再生氢在中国的发展,应建立氢能部际协调机制,并最好由国务院直接领导。否则,氢 能治理的职责如果长期分散在在不同部委之间,将会阻碍氢能的长足发展,并使中国错失先机。建议 由该高层协调机制主导对建设跨省氢能管道这一无悔基础设施的必要性和规划展开调查研究,以积极 应对中国氢气生产、消费地理错配的挑战。 ● 中央和地方政府补贴氢能发展时,应在制度设计层面防范“骗补”乱象并促进公平竞争。根据以往补 贴政策实施过程的经验教训——尤其是电动汽车领域——中国氢能监管框架应重视制约与平衡,并纳 入多重监督机制。 ● 为了缩小与发达经济体在氢能核心技术领域的差距,中国应考虑为包括跨国公司与本土企业在内的市 场主体营造更加公平的竞争环境。如果能够大幅加强知识产权保护、积极消除市场准入壁垒,中国将 能更好地深化与发达经济体在可再生氢领域的国际合作,并吸引欧盟特别是德国公司来华展开互利双 赢的技术合作和商业投资。
我们利用这些钻井指标,结合生产趋势,根据报告数据系列得出的比率,深入了解不同盆地之间的相对表现。我们根据通过比较盆地的比率得出的见解,分析了各个石油和天然气生产地区的生产力和效率。例如,与美国本土 48 个州的其他地区相比,二叠纪地区的 DUC 井数量下降幅度较小。这一趋势表明,随着二叠纪地区的油井完工(从 DUC 库存中移除),新井的钻探速度(添加到 DUC 库存中)比其他地区更快。
在“工业 4.0”的概念下,生产流程将变得越来越互联,信息以实时为基础,而且必然更加高效。在此背景下,产能优化超越了传统的产能最大化目标,也为组织的盈利能力和价值做出了贡献。事实上,精益管理和持续改进方法建议进行产能优化而不是最大化。产能优化和成本模型的研究是一个重要的研究课题,值得从实践和理论角度做出贡献。本文提出并讨论了基于不同成本模型(ABC 和 TDABC)的产能管理数学模型。已经开发了一个通用模型,并用于分析闲置产能并设计最大化组织价值的策略。强调了产能最大化与运营效率之间的权衡,并表明产能优化可能会掩盖运营效率低下的问题。© 2017 作者。由 Elsevier B.V. 出版。同行评审由 2017 年制造工程学会国际会议科学委员会负责。
在“工业 4.0”的概念下,生产流程将变得越来越互联,信息以实时为基础,而且必然更加高效。在此背景下,产能优化超越了传统的产能最大化目标,也为组织的盈利能力和价值做出了贡献。事实上,精益管理和持续改进方法建议进行产能优化而不是最大化。产能优化和成本模型的研究是一个重要的研究课题,值得从实践和理论角度做出贡献。本文提出并讨论了基于不同成本模型(ABC 和 TDABC)的产能管理数学模型。已经开发了一个通用模型,并用于分析闲置产能并设计最大化组织价值的策略。强调了产能最大化与运营效率之间的权衡,并表明产能优化可能会掩盖运营效率低下的问题。© 2017 作者。由 Elsevier B.V. 出版。同行评审由 2017 年制造工程学会国际会议科学委员会负责。
在“工业 4.0”概念下,生产流程将变得越来越互联,信息以实时为基础,而且必然更加高效。在此背景下,产能优化超越了传统的产能最大化目标,也为组织的盈利能力和价值做出了贡献。事实上,精益管理和持续改进方法建议进行产能优化而不是最大化。产能优化和成本模型的研究是一个重要的研究课题,值得从实践和理论角度做出贡献。本文提出并讨论了基于不同成本模型(ABC 和 TDABC)的产能管理数学模型。已经开发了一个通用模型,并用于分析闲置产能并设计实现组织价值最大化的策略。强调了产能最大化与运营效率之间的权衡,并表明产能优化可能会隐藏运营效率低下的问题。© 2017 作者。由 Elsevier B.V. 出版。同行评审由 2017 年制造工程学会国际会议科学委员会负责。
中国生产了所有锂离子电池的四分之三,拥有 70% 的正极产能和 85% 的负极产能(两者都是电池的关键部件)。超过一半的锂、钴和石墨加工和精炼产能位于中国。欧洲占全球电动汽车组装总量的四分之一以上,但除了 20% 的钴加工外,欧洲几乎没有其他供应链组成部分。美国在全球电动汽车电池供应链中的作用更小,仅占电动汽车产量的 10% 和电池产能的 7%。韩国和日本在原材料加工下游的供应链中占有相当大的份额,特别是在技术含量高的正极和负极材料生产方面。韩国占全球正极材料产能的 15%,而日本占正极材料产能的 14% 和负极材料产能的 11%。韩国和日本公司还参与生产其他电池部件,如隔膜。
5 如果燃料生产厂增加了额外的产能,则增加的产能被视为现有装置的一部分,前提是该产能是在同一地点添加的,并且添加时间不晚于初始装置投入运行后三年(36个月)。
此外,正如我们在今年 9 月的新闻稿中宣布的那样,我们目前正在研究钙钛矿涂层技术。关于未来与钙钛矿相关的举措,我们计划在明年 1 月公布涂层设备的详细规格并开始接受订单。我们打算在 2026 年 1 月举行的展会上展示一台商业模型机。第一台钙钛矿测试机预计将于 2026 年 5 月交付。我们将在获得新信息后更新进展情况。