细胞处理信息的能力目前用于设计基于细胞的工具,用于生态,工业和生物医学应用,例如检测危险化学物质或生物修复。在大多数应用中,单个单元格被用作信息进程单元。但是,单细胞工程受到必要的分子综合性和伴随的合成回路代谢负担的限制。为了克服这些局限性,合成生物学家已经开始工程多细胞系统,将细胞与设计的亚功能结合在一起。为了进一步推进合成多细胞系统中的信息处理,我们介绍了储层计算的应用。储层计算机(RCS)通过带有基于回归的读数的固定规则动态网络(储层)近似时间信号处理任务。重要的是,RCS消除了网络重新布线的需求,因为可以使用相同的储层近似不同的任务。预见的工作已经证明了单细胞和神经元种群充当储层的能力。在这项工作中,我们在多细胞种群中扩展了储层计算,并具有基于扩散的细胞间信号传导的广泛机制。作为概念验证,我们模拟了由3D通过扩散分子通信的细胞社区制成的储层,并将其用于近似二进制信号处理任务,重点介绍了两个基准功能 - 从二进制输入信号中分配中位数和平等功能。我们证明了基于扩散的多细胞储层是一种可行的合成框架,用于执行复杂的时间计算任务,该框架比单个单元格储层提供了计算优势。我们还确定了许多可能影响这些处理系统计算性能的生物学特性。
由原生动物寄生虫利什曼尼亚(Leishmania)的各种物种引起的利什曼尼亚疾病继续构成重大的全球健康挑战。药物一直处于打击这些疾病的最前沿,为受苦的人群提供了希望。本评论文章提供了:(1)对当前知识和利什曼尼亚疾病的杂环药物疗法不断发展的景观的全面分析; (2)专注于药物作用机理; (3)治疗作用; (4)副作用; (5)潜在的未来方向。审查首先概述了杂环药物在治疗利什曼尼亚疾病中的重要重要性。它突出了用于对抗利什曼原虫的各种药物,并阐明了其功效的独特机制。这些机制包括寄生虫内细胞过程的破坏,对DNA复制的干扰以及宿主免疫反应的调节。此外,本文深入研究了药物治疗的影响和副作用,对他们对患者的影响进行了深入的分析。它强调了有效的寄生虫清除和最大程度地减少不良反应之间需要保持平衡的需求,这强调了持续研究对完善药物治疗方案的重要性,并降低了耐药性。该评论还探讨了从化学疗法到免疫疗法的利什曼病疾病的各种疗法,并讨论了它们的优势和局限性。此外,它讨论了正在进行的研究工作,旨在开发新型药物配方,例如脂质体和基于纳米载体的递送系统,以增强药物疗效并降低毒性。本文至关重要地关注利什曼尼亚疾病的杂环药物疗法的未来观点。它强调了跨学科研究和整合新兴技术(例如基因组学和蛋白质组学)来确定疾病控制的新药物目标和策略的重要性。还将讨论联合疗法和免疫调节剂改善治疗结果和战斗耐药性的潜力。
摘要 战略领导者,在高级领导、技术和创新、医疗保健、长寿、国家安全和其他领域拥有 25 年以上经验。我创立和领导的公司创造了概念、公司和投资,使人们的生活大规模地变得更好、更安全。迄今为止,我已经创立并领导了 4 家公司,涉及人工智能、网络、量子、决策智能、预测分析和数据可视化、生物识别、医疗保健、长寿和战争游戏。作为埃森哲管理咨询公司和 SedoGravitas Partners(现任创始人兼执行合伙人)的高管,我为全球财富 50 强以及美国、新加坡、阿联酋和其他 20 多个国家的高级政府官员提供咨询和国际合作。我是一名企业家、做市商、发明家、首席执行官和思想领袖。我曾为埃森哲、Oracle/Siebel 等公司领导创新和新市场创造。人工智能/机器学习和分析领域已发布专利的共同发明人。技术、安全、网络、国际关系和技术领域的作家和主题演讲者。接受国际金融、银行和家族办公室协会电视台采访:https://www.youtube.com/watch?v=wYyAjD8PcoI 医疗保健首席执行官主题演讲:https://www.youtube.com/watch?v=dfP_oECVqmE
1儿科和细胞与发育生物学系,范德比尔特大学医学中心,纳什维尔,田纳西州纳什维尔市2健康信息学研究所,南佛罗里达大学,坦帕大学,坦帕,佛罗里儿科,哥伦比亚大学,纽约,纽约,7芭芭拉·戴维斯糖尿病中心,科罗拉多州科罗拉多州安索斯,贝纳罗伊亚研究研究所,西雅图市西雅图市99,99北田纳西州纳什维尔市纳什维尔,堪萨斯城,密苏里州13儿童医院,13,明尼苏达州明尼阿波利斯大学儿科系14 14埃默里大学,乔治亚州亚特兰大,乔治亚州15号,西南达拉斯大学,德克萨斯州达拉斯大学,德克萨斯州达拉斯大学,TX 16,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,弗吉尼亚州17皇家医院,梅尔伯恩医院和梅尔布尔市,威尔布尔市和Elbiria and Iria Inste,生病儿童医院,多伦多大学多伦多大学,加拿大安大略省
1 荷兰奈梅亨拉德堡德大学医学中心 Donders 大脑、认知和行为研究所;2 荷兰奈梅亨拉德堡德大学医学中心认知神经科学系;3 澳大利亚克莱顿莫纳什大学心理科学学院特纳大脑与心理健康研究所和莫纳什生物医学成像研究所;4 荷兰蒂尔堡大学蒂尔堡认知与交流中心交流与认知系;5 西班牙塞维利亚塞维利亚生物医学研究所 (IBiS);6 荷兰奈梅亨拉德堡德大学医学中心神经病学系和帕金森与运动障碍专业中心;7 英国伦敦伦敦国王学院精神病学研究所神经影像科学中心;8 英国牛津大学 Wellcome 综合神经影像中心 (WIN FMRIB)
1田纳西州纳什维尔大学范德比尔特大学分子生理与生物物理学系。11 2肌肉能量实验室,NHLBI,NIH,贝塞斯达,马里兰州,20892年,美国。12 3宾夕法尼亚州立学院宾夕法尼亚州立大学生物化学与分子生物学系,宾夕法尼亚州立大学13号宾夕法尼亚州立大学生命科学研究所,14 4 4 4 4美国爱荷华州爱荷华大学,爱荷华州,爱荷华州,爱荷华州52242,美国52242。15 5美国密苏里州圣路易斯华盛顿大学医学院医学系。 16 6加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学。 17 7田纳西州纳什维尔范德比尔特大学医学中心病理学系,美国37232。 18 8约翰·霍普金斯大学医学院病理学系,美国马里兰州巴尔的摩199 9 9儿科部门。 ,美国田纳西州纳什维尔市范德比尔特大学医学中心,圣路易斯大学医学院,密苏里州圣路易斯,密苏里州圣20204,密苏里州,圣路易斯大学医学院。 22 11医学系,范德比尔特大学传染病科,纳什维尔,23 tn,37232,美国。 24 12美国俄勒冈州立大学综合生物学系,俄勒冈州科瓦利斯,俄勒冈州97331,美国。 25 13中央显微镜研究机构,爱荷华州,爱荷华州52242,美国26 14 NIAMS,NIH,NIH,贝塞斯达,马里兰州,20892年,美国。 27 2815 5美国密苏里州圣路易斯华盛顿大学医学院医学系。16 6加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学加利福尼亚大学。17 7田纳西州纳什维尔范德比尔特大学医学中心病理学系,美国37232。18 8约翰·霍普金斯大学医学院病理学系,美国马里兰州巴尔的摩199 9 9儿科部门。,美国田纳西州纳什维尔市范德比尔特大学医学中心,圣路易斯大学医学院,密苏里州圣路易斯,密苏里州圣20204,密苏里州,圣路易斯大学医学院。 22 11医学系,范德比尔特大学传染病科,纳什维尔,23 tn,37232,美国。 24 12美国俄勒冈州立大学综合生物学系,俄勒冈州科瓦利斯,俄勒冈州97331,美国。 25 13中央显微镜研究机构,爱荷华州,爱荷华州52242,美国26 14 NIAMS,NIH,NIH,贝塞斯达,马里兰州,20892年,美国。 27 28,美国田纳西州纳什维尔市范德比尔特大学医学中心,圣路易斯大学医学院,密苏里州圣路易斯,密苏里州圣20204,密苏里州,圣路易斯大学医学院。22 11医学系,范德比尔特大学传染病科,纳什维尔,23 tn,37232,美国。24 12美国俄勒冈州立大学综合生物学系,俄勒冈州科瓦利斯,俄勒冈州97331,美国。25 13中央显微镜研究机构,爱荷华州,爱荷华州52242,美国26 14 NIAMS,NIH,NIH,贝塞斯达,马里兰州,20892年,美国。27 28
1。乳房服务,莫纳什健康,澳大利亚维克,东本特利; 2。McGrath基金会,澳大利亚新南威尔士州北悉尼; 3。 莫纳什护理和助产士,莫纳什大学,澳大利亚维克,莫纳什大学; 4。 墨尔本南部综合癌症服务部,澳大利亚维克,东本特利; 5。 莫纳什健康教育奖学金中心,克莱顿,维克,澳大利亚McGrath基金会,澳大利亚新南威尔士州北悉尼; 3。莫纳什护理和助产士,莫纳什大学,澳大利亚维克,莫纳什大学; 4。墨尔本南部综合癌症服务部,澳大利亚维克,东本特利; 5。莫纳什健康教育奖学金中心,克莱顿,维克,澳大利亚
8 1美国田纳西州纳什维尔大学医学中心上皮生物学中心,美国田纳西州纳什维尔市9 2托德比尔特大学,范德比尔特大学,田纳西州纳什维尔大学10 3 Vanderbilt免疫生物学中心,病理学系,微生物学系,微生物学,微生物学系,和范德比尔特大学医学中心,纳什维尔,医学中心,美国3723 24 2423.232323232222222222222222222222.美国田纳西州纳什维尔中心13 5 5 5 5 6 6 6 6 6 6 6 6 7 6美国纳什维尔大学医学院生物化学系14号生物化学系,美国田纳西州纳什维尔,美国16 7 7 7美国田纳西州纳什维尔18
异常及其患病率每年增加。其发育与肠道微生物群的不平衡密切相关,诸如肠道肝轴的破坏,对睾丸屏障的损害以及内毒素血症在其发病机理中起关键作用。近年来,肠道菌群的调节已成为NAFLD治疗的热门话题。Rifaximin是一种口服施用的不可吸收抗生素,在改善肠道菌群,减少氧毒素和减少炎症因子方面已显示出潜力。虽然短期使用已显示出积极的影响,但长期使用的安全及其对有益细菌的影响仍需要进一步研究。future研究应着重于优化利福昔明治疗策略,以为NAFLD提供更有效的治疗选择。
• 子结构分析 将技术的演进和平台的构建定位为服务的子结构。 参考路线图等,提取使用场景,考虑技术的演进。 商业模式的变化(关于平台的使用,是在影响分析部分提到的,而不是作为使用场景。