锗(GE)表现出较高的载流子迁移率和较低的加工温度的优势。这些使GE成为超老式CMOS逻辑设备和薄膜晶体管(TFTS)的应用,作为三维集成电路中的顶层[1-3]。在过去的几年中,针对GE P通道金属 - 氧化物 - 氧化物 - 氧化物 - 氧化物 - 局部效果晶体管(MOSFET)的表面钝化,栅极介电和通道工程的巨大努力已有助于显着改善设备的电气性能。但对于GE N-通道MOSFET,低有效载体迁移率(μEFF)极大地限制了晶体管的性能。各种表面钝化技术,包括SI钝化[1],氧化后血浆[4]和INALP钝化[5]和几种高κ电介质,包括HFO 2,ZRO 2,ZRO 2 [6-8],Y 2 O 3 [9]和LA 2 O 3 [10],已在GE NMosfets中探索。证明,与GE通道集成的ZRO 2电介质可以提供强大的界面,因为GEO 2界面层可以反应并与ZRO 2层反应[7]。在GE P通道晶体管中有一个不错的孔μEFF[6-8],而其对应物仍有很大的改善电子μEFF。
摘要 - 许多研究表明,在大气压力(也称为“冷大气等离子体”(CAP))处的非平衡放电有效地去除各种材料表面的生物污染物。最近,由于其产生的化学和生物活性自由基,CAP已迅速作为微生物清洁,伤口愈合和癌症治疗的技术,统称为活性氧和氮种(RONS)。本文回顾了与称为介电屏障排放(DBD)的一种有关的研究,该研究已广泛用于用微生物处理材料,以进行静脉化,消毒和去污染。为了推动在冷大气血浆应用中的研究,本综述讨论了屏障排放的各种类型和配置,反应性物种和其他DBD-CAP剂的作用以及其他导致其抗菌功效的DBD-CAP剂,其中一些DBD-CAP过去的过去研究专门在表面上以及DBD-CAP Tech-Tech-Tech-nology的出现应用。我们的审查表明,由DBD产生的非热/平衡等离子体可以对材料进行灭菌或消毒,而不会造成任何热损害或环境污染。
dmitriev,P.A.,Lassalle,E.,Ding,L.,Pan,Z.,Neo,D.C.J.,Valuckas,V.,Paniagua -dominguez,R.,Yang,J.K.W.,Demir,H。V.(2023)。杂种介电 - 质量纳米antena,具有子波长光子源的多散性。ACS Photonics,10(3),582-594。https://dx.doi.org/10.1021/acsphotonics.2c01332
加拿大金斯敦皇后大学癌症研究所的生物医学和分子科学系; B宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州佩雷尔曼高级医学中心泌尿外科系; c不列颠哥伦比亚大学泌尿科科学系,不列颠哥伦比亚省温哥华,加拿大; D德国弗莱堡大学医学与医学中心的输血医学和基因治疗研究所; E分司血液学/肿瘤学,Tisch Cancer Institute,伊坎医学院,美国纽约州纽约州西奈山; F美国医学博士NCI,NIH,NIH,NIH,美国马里兰州癌症研究中心免疫肿瘤中心; G.UniversitéParisCité,Institut Cochin,Inserm U1016,CNRS UMR 8104,巴黎,75014,法国; h粘膜炎症和免疫力,法国巴黎75015 Institut Pasteur学院,法国巴黎; I美国德克萨斯州休斯顿市德克萨斯大学医学博士安德森癌症中心外科泌尿外科系;加拿大QC蒙特利尔麦吉尔大学卫生中心泌尿外科J泌尿外科; k加拿大金斯敦皇后大学医学院泌尿外科系; l德克萨斯大学医学博士安德森癌症中心,美国德克萨斯州休斯敦的杰纳特里医学肿瘤学系
抽象的常见热塑料,即聚体(PC),聚(PC),聚(甲基丙烯酸甲酯)(PMMA)和丙烯腈丁二烯苯乙烯苯乙烯(ABS)是在新兴的6G连方系统中的潜在应用,可用于微型填充物和汇总fillectronics andastos,并具有潜在的应用。还需要进行更多的脚步应用,例如整个手持设备的包装,子组件和高频温度,而低成本是关键,而长寿命可能不是要求。在这项工作中,我们利用Terahertz时域光谱从500 GHz到2 THz来表征上述每个热塑性的介电特性和损耗切线。所研究的塑料具有低分散体的6G带中的折射率(〜1.6-1.7)。但是,吸收在高频上增加,因为在无序材料中通常会增加,这突出了6G的关键挑战。尽管如此,与(较高索引)玻璃杯和整个频率范围内(较高的)玻璃杯和陶瓷相比,所研究的所有热塑性塑料表现出低损失的性能,这表明它们是未来6G系统所选应用的有希望的候选者。
基于尾场的加速器能够将梯度加速比现有加速器高两个数量级,为实现紧凑型高能物理仪器和光源提供了一条途径。然而,对于高梯度加速器,由相应较高的横向尾场驱动的光束不稳定性会限制光束质量。此前的理论表明,可以通过将平面对称介电结构中的光束横向尺寸椭圆化来减小横向尾场。我们在此报告实验测量结果,这些测量结果表明平面对称结构中椭圆光束的横向尾场减小,这与理论模型一致。这些结果可能有助于设计出基于千兆伏/米梯度尾场的加速器,以产生并稳定加速高质量光束。
摘要:我们研究了由传输矩阵形式主义中微波区域内的二循环(A)和等离子体(P)材料组成的多通道过滤器的透射率。在应用磁场的影响下研究了提出的过滤器的两种构造:(1)包含空气包围的(a / p)N单位细胞的周期性结构,以及(2)引入第二个电端材料(d),该材料(D)作为A(d)的缺陷层(ap)n / 2 /2 / d / d / d / d / d / 2 Struc-2 Struc-2 Struc-2 Struc-2 Struc-2 Struc。我们的发现表明,在周期性的情况下,透射率的谐振状态随数n的数量增加;然而,观察到的蓝色和红移取决于施加的磁场的强度和方向。我们提出了透射系数的轮廓图,这些图显示了入射角对光子带隙的偏移的影响。此外,我们发现缺陷层的引入会产生额外的共振状态,并将中心共振峰合并为共振的小键。此外,我们表明,可以通过增加单位单元格数N并增加插入的缺陷层的宽度来调节共振峰及其位置的数量。我们提出的结构可以使用在微波区域中运行的磁化等离子体材料来设计新型的光子过滤器。
摘要:充当潜在量子门的分子多自旋系统需要微调磁相互作用以实现单自旋可寻址性和自旋量子比特的纠缠。我们在此报告一种新的单链钒基-卟啉二聚体的合成,该二聚体结晶为两种不同的伪多晶型。单晶连续波电子顺磁共振研究表明,两个倾斜且可区分的自旋中心之间存在微小但至关重要的各向同性交换相互作用 J ,其数量级为 10 -2 cm -1 。实验和 DFT 研究表明 J 值与卟啉平面倾斜角和扭曲度之间存在相关性。脉冲 EPR 分析表明,两个钒基二聚体保持了单体的相干时间。我们的结果,加上卟啉系统的蒸发性,表明这类二聚体在量子信息处理应用中极具前景。
诸如MOSFET,光电探测器,光伏细胞之类的设备的性能受到接口质量的强烈影响,尤其是介电和硅之间。已知通过高介电常数Diélectrics(High-k)对IF的钝化可以改善这些接口的电性能。在用于表征界面质量的方法中,第二次谐波(SHG)的产生是一种基于非线性光学器件的有希望的敏感和非破坏性技术。在偶极近似中,中心分析材料中的SHG响应(例如Si,Al 2 O 3,Sio 2等)为零。因此,SHG响应主要包含与界面相关的信息,其中对称性被打破。此外,在界面处的电场(E DC)存在下,信号得到加固。该现象称为efish(电场诱导的SHG)。由于电界面场与氧化物(Q OX)和/或界面状态(d IT)中的固定载荷相关联,因此SHG技术对这些电参数敏感。本论文的目的是校准SHG响应,以测量与电介质中固定载荷相关的电场。从SHG实验数据中提取电气信息需要考虑光学现象的影响(吸收,干扰等。),这得益于对所研究结构的第二个谐波的响应进行建模/模拟。我们的仿真程序基于我们为多层人士改编的文献的理论模型。实验是在Si(100)上的几层Al 2 O 3上进行的,在可变条件下沉积并且界面质量非常不同。互补的电气技术,例如Corona负载(COCOS)和容量张力测量(C-V)的表征,使得访问样品的电场并完成SHG结果以进行校准。实验和模拟证明了Si介电的单个校准的可能性还讨论了与多层(绝缘体上的硅)等多层表征相关的一些研究元素,特别是对各个接口处存在的层厚度或电场厚度的SHG响应的影响。