本摘要文件旨在为读者提供约书亚树国家公园资源管理战略的快照。为了简化和缩写,国家公园系统的这个单位在本文件中也将被称为“公园”或 JOTR。该文件作为一种沟通工具,是对积极用于资源管理的动态和不断发展的 RSS 桌面应用程序的补充。本摘要并非旨在描述资源管理战略中的所有要素,而是重点介绍该战略中对于传达有关公园解决关键管理问题的计划以及抓住机会利用被确定为优先自然和文化资源的资源的信息至关重要的组成部分。
卢肯尼亚大学(Lukenya University)最近开始实施一项一千万棵树生长计划,这是一部分更大的国家跨国乡村跨机构的树木种植计划。在本文中,我们描述了与树选择和种植本身有关的方法。请注意,大多数树木不是由机构直接植入农民在土地上种植的,并指示如何选择位置以及如何在技术上进行种植和维护,以确保对树木及其周围环境的成功取得更大的成功。,就种植的生物学和与小农社区的社会互动而言,这一知识源于多年的经验。我们跟踪许多不同树种的子样本的生存和生长。操作大约两年后,我们对初步数据进行了统计分析。我们观察到对本地树的生存和相对生长量具有统计学意义的优势,以及在绘制之前的上述综合教学,除其他观察结果外,我们还与所进行的假设检验相关。最后,我们对树木的碳固换和经济价值进行了估计。总而言之,该论文介绍了一项树木生长计划的全面透明展示,这是一种普遍的努力,旨在最大化社会福利和气候变化
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
最近,在利用人类反馈来增强图像产生方面取得了重大进展,导致迅速发展的研究领域的出现。但是,当前的工作面临着几个关键挑战:i)数据数量不足; ii)粗略的反馈学习;为了应对这些挑战,我们提出了Treereward,这是一种新型的多维,细粒度和自适应馈回学习框架,旨在改善扩散模型的语义和审美方面。具体来说,为了解决细粒反馈数据的限制,我们首先以“ AI + Exper”方式设计有效的反馈数据构建管道,产生约220万个高质量的反馈数据集,其中包含六个细粒度的尺寸。构建的,我们将构建一个树结构奖励模型,以有效利用细粒度的反馈数据,并在反馈学习过程中提供量身定制的优化。对稳定扩散V1.5(SD1.5)和稳定扩散XL(SDXL)的广泛实验证明了我们方法在增强一般且细粒度
AHO,Hopcroft和Ullman(Ahu)算法自1970年代以来一直是最先进的状态,以在线性时间确定是否是同构的,无论是两条无序的根树。但是,它已被坎贝尔和拉德福德(Campbell and Radford)(Radford)批评,其书面方式需要理解几个(RE)读数,并且不促进其分析。在本文中,我们提出了对算法的不同,更直观的锻炼,以及实施的三个命题,两种使用分类算法和一个使用Prime乘法。尽管这三种变体都没有承认线性复杂性,但我们表明,实际上有两个与原始算法具有竞争力,同时很容易实施。令人惊讶的是,尽管理论上的复杂性最差,但使用质数(在执行过程中也会生成)乘积(在执行过程中也生成)的算法与最快的变体具有竞争力。我们还适应了AHU的配方,以应对定向无环图(DAG)中树木的压缩。此算法也有三个版本,两个具有排序,一个带有质数乘法。我们的实验最多是10 6的树木,与我们知道的实际数据集一致,并在python中与图书馆Treex一起完成,并专用于树算法。
从自然语言生成数学方程式需要准确理解数学表达式之间的关系。现有的方法大致可分为标记级和表达式级生成。前者将方程式视为数学语言,顺序生成数学标记。表达式级方法逐一生成每个表达式。然而,每个表达式代表一个求解步骤,这些步骤之间自然存在并行或依赖关系,而现有的顺序方法却忽略了这些关系。因此,我们将树结构融入表达式级生成中,提倡表达式树解码策略。为了生成以表达式为节点的树,我们采用逐层并行解码策略:在每一层并行解码多个独立表达式(叶节点),并逐层重复并行解码,以顺序生成这些依赖于其他表达式的父节点表达式。此外,采用二分匹配算法将每一层的多个预测与注释对齐。实验表明,我们的方法优于其他基线方法,特别是对于那些具有复杂结构的方程。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。Creative Commons公共领域奉献豁免(http://creativecommons.org/publicdomain/zero/zero/1.0/)适用于本文中提供的数据,除非在信用额度中另有说明。
抽象背景:基因组数据的增加数量呼吁工具可以快速有效地产生基因组规模的系统发育。现有工具依赖于大型参考数据库或需要长长的从头计算来识别直系同源物,这意味着它们的运行时间很长,并且在分类学范围上受到限制。为了解决这个问题,我们创建了GetPhylo,这是一种从注释序列中快速生成系统发育树的python工具。结果:我们提出了GetPhylo(Ge nbank t o phylo Geny),该工具会自动从一个带注释的基因组中构建系统发育树。直系同源物是通过最大可能性的所有编码序列的串联比对来推断系统发育的。我们对两种现有工具AutoMlst和gtdb-tk进行了彻底的Get-Phylo基准测试,以表明它可以在很短的时间内生产出可比质量的树。我们还展示了在包括细菌和真核基因组以及生物合成基因簇在内的四个案例研究中Getphylo的屈曲。结论:GetPhylo是一种自动产生基因组规模系统发育树的快速可靠工具。getPhylo可以在很短的时间内产生与其他软件相当的系统发育,而无需大型本地数据库或强烈的计算。getphylo可以从各种数据集中迅速识别直系同源物,无论分类学或基因组范围如何。getphylo的可用性,速度,灵活性使其成为系统发育工具包的宝贵补充。
自2022年以来由生物多样性中心资助,该项目是通过四个面对面的研讨会开发的,还有其他三个在线会议,参与者共同努力在实现上述目标所需的特定工作流程上合作:S:1-数据库协调; 2-树多样性的模式; 3-树木多样性的驱动因素;和4-树木脆弱性对于气候变化情景(作为新热带生物多样性保护的原始工作的一部分)。