展示了一种在现有盒式磁带上进行一锅式 HA 交换的系统(Int 模块)。这使得在短短两天内将复杂供体重定向到任何可用的整合位点,包括删除目标(补充手册第 1.5 节)。此外,尽管现在有许多技术可用于在 Cas9 辅助质粒上进行指导重新编码,但它们在分子操作的数量和复杂性方面差异很大。我们决定完全绕过复杂的体外步骤,通过在转化的细菌组装宿主(Cas 模块)内的空辅助质粒上直接重组单个寡核苷酸。这将组装所需的时间缩短到细菌组装所需的时间长度
。cc-by-nc 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权所有,该版本于2023年4月4日发布。 https://doi.org/10.1101/2023.04.03.535386 doi:Biorxiv Preprint
假单胞菌 KT2440 是一种研究较为深入的细菌,可将木质素衍生的芳香族化合物转化为生物产品。假单胞菌中先进遗传工具的开发缩短了假设检验的周转时间,并使得能够构建能够生产各种目标产品的菌株成为可能。在这里,我们评估了可诱导 CRISPR 干扰 (CRISPRi) 工具集对荧光、必需和代谢靶标的作用。结果表明,用阿拉伯糖 (8K) 诱导启动子表达的核酸酶缺陷型 Cas9 (dCas9) 在各种培养基条件下以及靶向必需基因时均受到严格调控。除了批量生长数据外,还进行了单细胞延时显微镜检查,结果显示同克隆群体中敲低率的内在异质性。在指数增长的细胞中,研究了跨基因组靶标的敲低动力学,发现诱导后普遍存在 1.75 ± 0.38 小时的静止期,其中发生 1.5 ± 0.35 次倍增后才会观察到表型反应。为了展示这套 CRISPRi 工具集的应用,β-酮己二酸(一种性能优越的尼龙单体)以 4.39 ± 0.5 g/L 的浓度和 0.76 ± 0.10 mol/mol 的产量从对香豆酸(一种可从禾本科植物中提取的羟基肉桂酸)中生产出来。这些培养指标是通过使用更高强度的 IPTG (1K) 诱导启动子在指数期早期敲低 β KA 途径中的 pcaIJ 操纵子来实现的。这使得大部分碳被分流到所需产品中,同时无需补充碳和能量来源来支持生长和维持。
设施:PCR 装置-自动热循环仪(Applied biosystems)凝胶文档系统(Biorad)、HPLC – 制备和分析(Shimadzu)、二氧化碳培养箱、蛋白质凝胶电泳系统(Amersham Pharmacia)、色谱柱(Amersham Pharmacia)、冷冻离心机(Heraeus)、分光光度计(Shimadzu 2)、14 升发酵罐 - 全自动(Scigenics)、迷你发酵罐(Eyela Inc. Japan)、伽马计数器(ECI)、相差显微镜(Nikon,日本)、倒置相差显微镜(Olympus CK 40)、冻干机(Yamata Neocool,日本)、电子天平(Mettler)、实时 PCR 应用生物系统)、纳米分光光度计、低温恒温器、-80˚C 深度冷冻机(Thermo、Panasonic、 Eppendorf)、脉冲场凝胶电泳 (PFGE)-Bio-Rad、II 级生物安全柜、步入式冷藏室、多模式平板读数器、荧光细胞分选器- FAC、带照相机附件和其他配件的倒置显微镜、荧光显微镜、植物组织培养设施、动物细胞培养设施、斑马鱼设施、秀丽隐杆线虫设施、小动物设施。
a TEGA Therapeutics Inc,3550 General Atomics Court, G02-102,San Diego,CA,92121,美国 b 加利福尼亚大学圣地亚哥分校儿科和生物工程系,9500 Gilman Drive,La Jolla,CA,92093,美国 c 加利福尼亚大学圣地亚哥分校医学院皮肤病学系,9500 Gilman Drive,La Jolla,CA,92093,美国 d 纽约州立大学理工学院纳米科学与工程学院,257 Fuller Road,Albany,NY,12203,美国 e 芝加哥洛约拉大学心血管研究所,健康科学部,2160 S 1st Avenue,Maywood,IL,60153,美国 f 国家生物标准与控制研究所,Blanche Lane,South Mimms,Herts,EN6 3QG,英国 g加利福尼亚大学圣地亚哥分校糖生物学研究与培训中心,9500 Gilman Drive,La Jolla,CA,92093,美国 h 加利福尼亚大学圣地亚哥分校细胞与分子医学系,9500 Gilman Drive,La Jolla,CA,92093,美国
(未经同行评审认证)是作者/资助者。保留所有权利。未经许可不得重复使用。此预印本的版权所有者此版本于 2022 年 3 月 16 日发布。;https://doi.org/10.1101/2021.12.29.474413 doi:bioRxiv preprint
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2021年9月16日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2021.09.16.460614 doi:biorxiv Preprint
石油和石油资源的开采和利用以及将其转化为基本燃料和化学品,对环境产生了严重影响,导致全球变暖和气候变化。此外,化石燃料是有限的资源,很快就会短缺。因此,研究工作越来越侧重于开发化学品和燃料生产的可持续替代品。在这种情况下,依赖微生物的生物过程引起了特别的兴趣。例如,产乙酸菌使用 Wood-Ljungdahl 途径以单碳 C1 气体(CO 2 和 CO)作为唯一碳源生长,并产生有价值的产品,如醋酸盐或乙醇。因此,这些自养生物可用于大规模发酵过程,从丰富的温室气体中生产工业相关化学品。此外,最近已经开发出遗传工具,通过合成生物学方法改进这些底盘生物。本综述将重点介绍遗传和代谢改造产乙酸菌的挑战。它将首先讨论这些生物体中成功进行 DNA 转移的物理和生化障碍。然后将介绍目前为几种产乙酸菌开发的遗传工具,这些工具对于菌株工程巩固和扩大其产品目录至关重要。最后将介绍用于代谢工程目的的最新工具应用,这些工具允许重新定向代谢通量或生产非天然化合物。
摘要:群集定期间隔短的短膜重复序列(CRISPR)/CAS(CRISPR相关蛋白质)9工具已经彻底改变了生物学 - 已经构建了几个高效的高效工具,这些工具已导致能够快速设计模型细菌,例如,Escherichia coli。但是,CRISPR/CAS9工具的使用已落后于非模型细菌,阻碍了工程工作。在这里,我们开发了改进的CRISPR/CAS9工具,以实现与工业相关细菌丙梭菌的有效快速代谢工程。以前的努力在C. actobutylicum中实施CRISPR/CAS9系统已受到缺乏严格控制的诱导系统以及大质粒的影响,从而阻碍了较低的转化效率。我们从艰难梭菌的木糖诱导系统控制下成功地将Cas9基因从链球菌诱导的系统控制到了基因组,然后我们表明,这导致了一个紧密控制的系统。然后,我们优化了编辑盒的长度,从而产生了一个小的编辑质粒,该质粒还包含UPP基因,以便使用UPP /5-氟尿嘧啶的反式系统快速失去质粒。我们使用该系统执行LDHA和PTB-BUK操纵子的单独和顺序缺失。
萜类化合物是一大类具有商业用途的天然产物。微生物生产萜类化合物被认为是稳定供应这些复杂碳氢化合物的可行方法。蓝藻是一种光合原核生物,是可持续生物生产的有吸引力的宿主,因为这些自养生物只需要光和二氧化碳就能生长。尽管蓝藻已被改造成生产各种化合物,但它们的萜类化合物生产率通常较低。需要进一步研究以确定提高蓝藻萜类化合物产量的瓶颈反应。在这项研究中,我们对快速生长的蓝藻 Synechococcus elongatus UTEX 2973 进行了改造,使其生产一种商业用途的萜类化合物柠檬烯。我们在编码香叶基香叶基焦磷酸合酶 crtE 的基因中发现了一个有益的突变,导致柠檬烯产量增加了 2.5 倍。工程菌株以每天 8.2 mg L 1 的速率生产了 16.4 mg L 1 的柠檬烯,比之前报道的其他蓝藻物种的柠檬烯产量高出 8 倍。此外,我们采用了组合代谢工程方法来优化参与柠檬烯生物合成上游途径的基因。通过调节编码 MEP 途径中的酶和香叶基焦磷酸合酶的基因的表达,我们表明优化表达水平对于提高蓝藻中的柠檬烯产量至关重要。