来自Mitragyna Speciosa(MIAS)(MIAS)(MIAS)(“ Kratom”)(例如Mitragynine和Speciogynine)是阿片类药物受体配体的新型脚手架,用于治疗疼痛,成瘾和抑郁症。虽然在东南亚用作刺激性和疼痛管理物质已有数百年的历史,但这些精神活性的生物合成途径直到最近才被部分阐明。在这里,我们通过重建了来自普通MIA前体的五步合成途径,从而证明了酿酒酵母中的mitragynine和speciogynine,该途径由普通MIA PRECURSOR严格sillitersitor构成带有真菌性比喻的4-偶生酶,以绕过一个不知名的kratom kratom hydroxylase sydroxylase。在优化培养条件下,从葡萄糖中获得了〜290 µg/l kratom mias的滴度。铅生产菌株的无靶向代谢组学分析导致鉴定出众多的分流产物,这些分流产物是由严格os子氨酸合酶(Str)和二氢核南氨酸合酶(DCS)的活性得出的,突显了它们作为酶工程的候选物,以进一步改善kratom mias Mias在YEAST中的生产。最后,通过喂养氟化的色胺并表达人类的裁缝酶,我们进一步证明了氟化和羟基化的Mitragynine衍生物的产生,并在药物发现运动中可能采用潜在的应用。总的来说,这项研究引入了一个酵母细胞工厂平台,用于具有具有治疗潜力的复杂天然和新型Kratom MIAS衍生物的生物制造。
摘要,以更好地了解β-芳特烯的健康益处,维生素A的前体及其着色特性,对这种类胡萝卜素的需求在各个部门都增加了。为了有效,便宜和可持续地满足需求,通过代谢工程策略对异源β-胡萝卜素生产的兴趣有所增加。在这种情况下,尽管它不是β-胡萝卜素的本地生产国,但脂溶性酵母菌的代谢,生理和基因组特性却脱颖而出。通过使用一系列工程策略,包括生物合成途径工程,形态工程和发酵工程策略,从而获得了成功的结果。脂溶剂。但是,这些策略彼此之间具有各种优势和弱点,并且也有一些开放的进步。在这篇综述中,已应用的工程策略有可能用于从Y生产β-胡萝卜素的可能性。脂溶性已深入研究,包括它们的优势和缺点,并相互比较。此外,已经提出了未来的观点,以提高使用Y的潜力。脂溶性酵母作为β-芳特烯生产中的细胞工厂。
摘要:群集定期间隔短的短膜重复序列(CRISPR)/CAS(CRISPR相关蛋白质)9工具已经彻底改变了生物学 - 已经构建了几个高效的高效工具,这些工具已导致能够快速设计模型细菌,例如,Escherichia coli。但是,CRISPR/CAS9工具的使用已落后于非模型细菌,阻碍了工程工作。在这里,我们开发了改进的CRISPR/CAS9工具,以实现与工业相关细菌丙梭菌的有效快速代谢工程。以前的努力在C. actobutylicum中实施CRISPR/CAS9系统已受到缺乏严格控制的诱导系统以及大质粒的影响,从而阻碍了较低的转化效率。我们从艰难梭菌的木糖诱导系统控制下成功地将Cas9基因从链球菌诱导的系统控制到了基因组,然后我们表明,这导致了一个紧密控制的系统。然后,我们优化了编辑盒的长度,从而产生了一个小的编辑质粒,该质粒还包含UPP基因,以便使用UPP /5-氟尿嘧啶的反式系统快速失去质粒。我们使用该系统执行LDHA和PTB-BUK操纵子的单独和顺序缺失。
拜氏梭菌 (Clostridium beijerinckii) 是一种很有前途的丁醇工业生产微生物,但其丁醇产量低且缺乏高效的基因工程工具包。一些负责 Spo0A 磷酸化的组氨酸激酶 (HK) 已被证实是调控溶剂型梭菌 (如丙酮丁醇梭菌) 丁醇生物合成的重要功能组分,但尚未在拜氏梭菌中进行有关 HK 的研究。本研究通过序列比对,筛选出 6 个已注释但尚未鉴定的候选 HK 基因,这些基因与丙酮丁醇梭菌的基因具有部分同源性(不低于 30%)。利用基于 CRISPR-Cas9n 的基因组编辑技术删除这些 HK 基因的编码区。 cbei2073 和 cbei4484 的缺失导致丁醇生物合成发生显著变化,与野生型相比,丁醇产量分别增加了 40.8% 和 17.3% (13.8 g/L 和 11.5 g/L vs. 9.8 g/L)。观察到丁醇生产速率更快,丁醇生产率分别大幅提高了 40.0% 和 20.0%,表明这两个 HK 在调节 C. beijerinckii 细胞代谢中起重要作用。此外,两个 HKs 失活菌株的孢子形成频率分别降低了 96.9% 和 77.4%。与野生型相比,另外四个 HK 缺失突变菌株(包括 cbei2087、cbei2435、cbei4925 和 cbei1553)表现出的表型变化很小。本研究揭示了HKs在拜氏梭菌中孢子形成和溶剂生成中的作用,并提供了一种新的HKs工程化策略来提高代谢物的产量。本研究产生的高丁醇生产菌株在工业生物丁醇生产中具有巨大的潜力。
摘要背景:通过生物化学转化从可再生生物质中获得的生物燃料和增值生物化学品已引起广泛关注,以满足全球可持续能源和环境目标。异丁醇是一种四碳醇,具有许多优点,使其成为有吸引力的化石燃料替代品。运动发酵单胞菌是一种高效的厌氧产乙醇细菌,使其成为生物精炼厂的有前途的工业平台。结果:在本研究中,研究了异丁醇对运动发酵单胞菌的影响,并构建了各种生产异丁醇的重组菌株。结果表明,运动发酵单胞菌亲本菌株能够在低于 12 g/L 的异丁醇存在下生长,而浓度高于 16 g/L 会抑制细胞生长。运动发酵单胞菌中异丁醇生产需要整合编码 2-酮异戊酸脱羧酶的异源基因,例如来自乳酸乳球菌的 kdcA。此外,在由四环素诱导启动子 Ptet 驱动的含有 kdcA 基因的重组菌株中,异丁醇产量从接近零提高到 100–150 mg/L。另外,我们确定在表达 kdcA 的重组 Z. mobilis 菌株中过表达异源 als 基因和两个参与缬氨酸代谢的天然基因( ilvC 和 ilvD )可将丙酮酸从乙醇生产转移到异丁醇生物合成。这一工程将异丁醇产量提高到 1 g/L 以上。最后,确定了含有由 Ptet 驱动的合成操纵子 als - ilvC - ilvD 和由组成型强启动子 Pgap 驱动的 kdcA 基因的重组菌株大大提高了异丁醇产量,最高滴度约为 4.0 g/L。最后,异丁醇生产受到通气的负面影响,通气较差的烧瓶中会产生更多的异丁醇。结论:这项研究表明,kdcA 与合成异源操纵子 als - ilvC - ilvD 的过度表达对于将丙酮酸从乙醇生产中转移出来以增强异丁醇的生物合成至关重要。此外,这项研究还提供了一种利用缬氨酸代谢途径在 Z. mobilis 中生产其他丙酮酸衍生生物化学物质的策略。关键词:Zymomonas mobilis、生物燃料、异丁醇、代谢工程、丙酮酸衍生生物化学物质、2-酮异戊酸脱羧酶 (Kdc)
石油和石油资源的开采和利用以及将其转化为基本燃料和化学品,对环境产生了严重影响,导致全球变暖和气候变化。此外,化石燃料是有限的资源,很快就会短缺。因此,研究工作越来越侧重于开发化学品和燃料生产的可持续替代品。在这种情况下,依赖微生物的生物过程引起了特别的兴趣。例如,产乙酸菌使用 Wood-Ljungdahl 途径以单碳 C1 气体(CO 2 和 CO)作为唯一碳源生长,并产生有价值的产品,如醋酸盐或乙醇。因此,这些自养生物可用于大规模发酵过程,从丰富的温室气体中生产工业相关化学品。此外,最近已经开发出遗传工具,通过合成生物学方法改进这些底盘生物。本综述将重点介绍遗传和代谢改造产乙酸菌的挑战。它将首先讨论这些生物体中成功进行 DNA 转移的物理和生化障碍。然后将介绍目前为几种产乙酸菌开发的遗传工具,这些工具对于菌株工程巩固和扩大其产品目录至关重要。最后将介绍用于代谢工程目的的最新工具应用,这些工具允许重新定向代谢通量或生产非天然化合物。
多年来,摘要5-氨基乙烯酸(5- ALA)的生物产生受到了人们的关注。但是,由于产生5 -ALA,发酵汤将变得酸性,因此在5 -ALA生物合成和细胞生长之间存在权衡。为了解决这一限制,我们设计了一种耐酸的酵母,即Issatchenkia Orientalis sd108,以进行5 -ALA生产。我们首先发现I. Orientalis SD108的细胞生长速率被5 -ALA增强,其内源性ALA合成酶(ALA)的活性高于其他酵母中的同源物。通过优化质粒设计,过表达转运蛋白和增加基因拷贝数,将5- ALA的滴度从28 mg/L到120-,150-和300 mg/L的提高。使用丙酮酸脱羧酶(PDC)敲除菌株(SD108δPDC)并用尿素进行培养后,我们将510 mg/l的滴度提高到510 mg/l,13-折叠率增强性,证明了与新的IOIALAL活动的重要性,我们将510 mg/l的滴度提高到510 mg/l,这是13-倍数增强。这项研究证明了耐酸I. OrientalisSD108ΔPDC在将来大规模的5- ALA产生的潜力很高。
微生物细胞工厂。学生将能够设计和开展实验,使用最新的工具和技术来生成新型菌株,这些菌株既可以生产燃料、化学品和材料,也可以修复污染或作为食品消费,然后制定计划将其解决方案扩大到工业流程。鼓励学生创造性和创新性地思考气候变化和可持续性等重大挑战,然后设计新颖的生物系统和过程来应对这些挑战。该课程还旨在灌输强烈的道德责任感和对生物技术进步的社会影响的理解。包含基于团队的学期项目将让学生接触跨学科解决问题并促进协作思维。学习成果在课程结束时,学生将能够:
。CC-BY 4.0国际许可证。是根据作者/资助者提供的预印本(未经Peer Review的认证)提供的,他已授予Biorxiv的许可证,以在2024年9月28日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2024.09.27.27.614867 doi:Biorxiv Preprint