。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月7日。 https://doi.org/10.1101/2025.03.03.03.03.641322 doi:Biorxiv Preprint
1泰国清迈50200的清迈大学健康科学研究所; sayamon.ho@cmu.ac.th 2 Lucent International合作,合作医学科学学院,Chiang Mai University,Chiang Mai 50200,泰国; nangkhamkjing_nang@cmu.ac.th(N.K.-K。); nuttadap@uw.edu(n.p。); nicole.ngo-giang-huong2@ird.fr(N.N.-G.-H。)3医学技术系,泰国清迈50200的恰格·梅大学相关医学科学系; piyagorn.m@gmail.com(p.m.); wannaporn.d@cmu.ac.th(W.D.); nuntita.nan@gmail.com(n.k。); jaiyapan@gmail.com(N.J。)4泰国Phayao 56000 Phayao大学医学科学学院; nongaon00366@gmail.com 5美国华盛顿州西雅图市华盛顿大学生物工程系98195; klinee@uw.edu 6 Department of Global Health, University of Washington, Seattle, WA 98195, USA 7 Maladies Infectieuses et Vecteurs: É cologie, G é n é tique, É volution et Contr ô le (MIVEGEC), Agropolis University Montpellier, Centre National de la Recherche Scientifique (CNRS), Institut de Recherche Pour le développement(IRD),34394蒙彼利埃,法国8国际联合实验室Presto,Chiang Mai 50200,泰国 *通信:woottichai.k@cmu.ac.ac.th
抽象的客观细胞毒性剂是治疗肝内胆管癌(ICCA)的治疗的基石,尽管有异质益处。我们假设诊断活检的预处理分子谱可以预测患者从化学疗法中受益,并定义先天化学耐药性的分子碱基。设计,我们确定了具有可比基线特征的晚期ICCA患者的队列,这些患者在化学疗法方面具有极端异常值(RP Progressors,RP中的生存<6 m;长期存活者中的生存> 23 m,LS)。诊断活检的特征是数字病理学,然后经过散装和地理空间占地组织区域的全转录组分析。使用靶向数字空间分析(GEOMX)进行肿瘤浸润的髓样细胞的空间转录组学。 在切除的癌症中评估了转录组特征。 签名也使用体外细胞系,体内小鼠模型和单细胞RNA测序数据表征。 结果预处理转录组曲线分化的患者将成为RPS或LSS化学疗法的患者。 从生物学上讲,该签名源自肿瘤乳突动力学的改变,暗示肿瘤诱导的免疫耐受性,对化学疗法的反应不佳。 RPLS转录组签名与ICCA中的临床结局的关联以及肝外肝外CCA和结直肠癌的肝转移中的临床结局的关联,但在匹配的原发性肠肿瘤中没有。使用靶向数字空间分析(GEOMX)进行肿瘤浸润的髓样细胞的空间转录组学。在切除的癌症中评估了转录组特征。签名也使用体外细胞系,体内小鼠模型和单细胞RNA测序数据表征。结果预处理转录组曲线分化的患者将成为RPS或LSS化学疗法的患者。从生物学上讲,该签名源自肿瘤乳突动力学的改变,暗示肿瘤诱导的免疫耐受性,对化学疗法的反应不佳。RPLS转录组签名与ICCA中的临床结局的关联以及肝外肝外CCA和结直肠癌的肝转移中的临床结局的关联,但在匹配的原发性肠肿瘤中没有。结论RPLS签名可能是ICCA化学疗法结果的新型指标。有必要进一步开发和验证该转录组签名,以在这些情况下制定精确的化学疗法策略。引言肝内胆管癌(ICCA)是由
摘要:马匹质质症(EP)是由Theileria Equi(T。Equi),Babesia Caballi(B。Caballi)和Theileria haneyi(T. Haneyi)引起的寄生疾病。这种疾病被世界动物健康组织(WOAH)认为是可报告的。实时定量PCR(QPCR)被认为是一种直接,快速和敏感的诊断方法,可检测病原体。但是,QPCR尚未用于Haneyi的各种流行病学研究中。在这项研究中,我们开发了一种新的QPCR方法来检测基于CHR1SCO(染色体1染色体单拷贝开放式阅读框(ORF))基因的Haneyi,该基因在T. equi或B. caballi中没有可检测到的直系同源物。用于开发QPCR分析的Taqman MGB探针。构建了含有CHR1SCO基因的质粒并用于建立标准曲线。 新型的QPCR技术证明了出色的特殊特异性,用于检测其他频繁的马传染病和敏感性,以检测稀释的标准质粒。 在分析96个临床样品中,通过与优化的嵌套PCR(NPCR)测定进行比较,进一步验证了该QPCR。 NPCR分析与已建立的QPCR分析之间的协议为85.42%。 新建立的方法可能有助于准确诊断马匹中的Haneyi感染。构建了含有CHR1SCO基因的质粒并用于建立标准曲线。新型的QPCR技术证明了出色的特殊特异性,用于检测其他频繁的马传染病和敏感性,以检测稀释的标准质粒。在分析96个临床样品中,通过与优化的嵌套PCR(NPCR)测定进行比较,进一步验证了该QPCR。NPCR分析与已建立的QPCR分析之间的协议为85.42%。新建立的方法可能有助于准确诊断马匹中的Haneyi感染。
本文提出了基于物理的,还原的电化学模型,这些模型比电化学伪2D(P2D)模型快得多,同时即使在高C速率的挑战性条件下,也提供了较高的精度,并且在电池中锂离子浓度的较高极化和强度的极化。尤其是通过使用形状函数来开发创新的方程式弱形式,从而将完全耦合的电化学方程和传输方程降低到普通微分方程,并为多项式系数的演变提供自洽的解决方案。结果表明,称为修订后的单粒子模型(RSPM)和快速计算的P2D模型(FCP2D)的模型提供了对电池操作的高度可靠预测,包括动态驾驶轮廓。他们可以计算电池参数,例如终端电压,过电位,界面电流密度,锂离子浓度分布和电解质电位分布,相对误差小于2%。适用于适度高的C速率(低于2.5 C),RSPM的速度比P2D模型快33倍以上。FCP2D适用于高C速率(高于2.5 C),比P2D模型快8倍。凭借其高速和准确性,这些基于物理的模型可以显着提高电池管理系统的功能和性能,并加速电池设计优化。关键字:锂离子电池;减少阶模型;修订后的单粒子模型(RSPM);快速计算P2D模型(FCP2D);准确性;效率
由结核分枝杆菌引起的抽象结核病(TB)是世界上10种主要的杀手疾病之一。至少有四分之一的人口被感染,每年有130万人死亡。抗多药(MDR)和广泛抗药性(XDR)菌株的出现挑战结核病治疗。一线和二线方案中广泛使用的药物之一是吡嗪酰胺(PZA)。从统计上讲,50%的MDR和90%的XDR临床菌株对PZA具有抵抗力,并且最近的研究表明,其在耐PZA抗性菌株患者中的使用与较高的死亡率有关。因此,迫切需要开发准确且有效的PZA敏感性测定法。PZA穿过结核分枝杆菌,并通过PNCA基因编码的烟酰胺酶水解为其活性形式,吡唑酸(POA)。多达99%的临床耐PZA菌株在该基因中具有突变,这表明这是最可能的耐药机制。但是,并非所有PNCA突变都赋予PZA稳定性,而只会导致POA产生有限。因此,对PZA的敏感性可能仅仅是由于其形成或不形成POA的能力而言。在这里,我们提出了一种NU-清晰的磁共振方法,可以直接在TB患者收集的痰液上清液中准确量化POA。确定了临床痰培养物水解PZA的能力,结果与其他生化和分子PZA药物易感性测定的结果相关。获得的出色敏感性和特定的价值观表明,该方法可能成为确定PZA敏感性的新金标准。
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aenm.202202906。本文受版权保护。保留所有权利。
视频人工智能系统的成本和收益如何?视频人工智能:初始成本和长期收益 投资人工智能是许多公司经常谈论的事情。但您实际上投资的是什么?成本是多少?长期收益是什么?在本白皮书中,我们将解释如何以及为何投资视频人工智能。 为什么要投资视频人工智能?主要原因是视觉图像包含非常重要的数据。通过使用这些数据,您可以作为一家公司脱颖而出,目标是为您的客户提供更好的解决方案。 通过投资视频人工智能 (Video AI),您可以从视频数据中获得正确的智能信息。简而言之,人工智能 (AI) 以高度智能的方式识别、分类和索引镜头。在此基础上,可以搜索、编辑和量化收集和分类的数据。人工智能软件实时处理视频数据,以便您可以在发生检测警报时快速评估和响应。此外,可以轻松检索现有视频片段。因此,您可以快速搜索数千小时的镜头以查找所需的事件。当 AI 系统识别、分类和索引素材时,会产生额外的数据。从长远来看,这些收集到的元数据可以成为有价值的商业智能的额外来源。可以使用各种商业智能工具清晰地以图形方式显示这一点。当您考虑实施视频 AI 系统时,重要的是要正确评估总购置成本。换句话说,就是总拥有成本 (TCO)。当然,这些成本会根据每个组织的独特需求和情况而有所不同。本白皮书将概述系统要求、基础设施、网络和实施方面的各种实施因素和相关成本考虑因素。以及该产品可以提供的巨大长期节省。系统要求视频 AI 是一种智能软件技术,但为了使软件正常运行,外围设备必须到位。提前清楚了解所需的系统要求非常重要。IP 摄像机的数量、所需的 AI 功能以及安装类型(本地、远程或云)的组合决定了所需的系统要求。一些视频 AI 平台易于与已安装的 IP 摄像机结合使用。在销售过程中提出这一点很重要,因为它会影响初始投资。一个好的视频 AI 实施合作伙伴可以就所需的硬件为您提供建议。为了达到预期的效果,确定摄像机的类型和摄像机的位置非常重要。基础设施视频 AI 解决方案的基础设施因需求而异。有些人希望为多个位置提供集成解决方案,而其他人可能会考虑将视频 AI 用于单个位置。IP 摄像机、AI 服务器和 NVR/VMS 系统都可以位于一个物理位置本地,也可以位于多个物理位置。将物理位置上的摄像机与(公共)云中的软件相结合也是可能的。同样,正确的 AI 实施合作伙伴的作用非常重要。
摘要:全球的土著社区,尤其是在农村地区,食用当地可用的植物,称为传统食品植物(TFP),以满足其营养和健康相关的需求。最近的研究表明,许多TFP具有高度营养,因为它们含有健康的代谢产物,维生素,矿物质元素和其他营养素。过分依赖主流主食作物具有自己的缺点。如今,传统食用植物被认为是未来的重要农作物,可以充当新兴全球人口的补充食品。他们也可以在Covid-19和其他大流行时期等情况下充当紧急食品。当前情况需要本地可用的营养TFP来进行可持续的粮食生产。要增加培养或改善TFP中的特征,必须了解调节一些重要特征的基因的分子基础,例如营养成分以及对生物和非生物胁迫的韧性。现代OMIC和基因编辑技术的综合使用提供了很好的机会,可以更好地了解优质营养含量,气候富度性状以及适应当地农业气候区域的遗传和分子基础。最近,意识到TFP的重要性和利益,科学家表现出对TFPS的研究和测序的兴趣,以改善其改进,培养和主流化。诸如基因组学,转录组学,蛋白质组学,代谢组学和离子组学之类的综合法学已成功地用于植物中,并对基因 - 蛋白质 - 金代谢物网络有了全面的了解。组合使用OMICS和编辑工具已成功地编辑了几个TFP中的有益特征。这表明有足够的范围用于改善可持续粮食生产的TFP。在本文中,我们强调了通过综合使用OMIC和基因编辑技术来改善TFP的重要性,范围和进步。
微生物生物传感器可以是用于毒性监测的经典方法的绝佳替代方法,这些方法耗时且灵敏。但是,细菌通常通过生物膜形成连接到电极,从而导致问题由于缺乏统一性或较长的装置生产时间而引起的问题。合适的固定技术可以克服这些挑战。仍然,它们的响应可能比基于生物纤维的电极更慢,因为在生物膜期间细菌逐渐适应电子转移。在这项研究中,我们提出了一种可控且可再现的方法来制造细菌模化的电极。该方法由使用纤维素基质的固定步骤组成,然后在存在铁酰胺和葡萄糖的情况下进行电极极化。我们的过程简短,可重现,并使我们获得具有高电流响应的现成电极。固定的电化学活性细菌的出色保存期长达一年。在第一个月最初的50%活动损失后,在接下来的11个月中未观察到进一步下降。我们实施了细菌模化的电极,以使用甲醛(3%)制造一个用于毒性监测的侧向流平台。其添加导致有毒输入后约20分钟的电流减少59%。此处介绍的方法具有发展高灵敏度,易于产生和长长的货架生物生物细菌毒性探测器的能力。©2020作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。