基于此,作者进一步构建了窄带发射,高量子效率和低效率滚动特性的天蓝色OLED。值得注意的是,基于BCZBN-3B的OLED的最大外部量子效率为42.6%,为使用二进制发射层的OLED设备设定了新的效率记录。此外,在1000 cd m -2的亮度下,该设备仍保持30.5%的效率,显示效率较小。
摘要:三级烧伤受伤构成了重大的健康威胁。迫切需要更安全,更易于使用,更有效的技术来治疗。我们假设脂肪酸和三肽的共价结合物可以形成与伤口兼容的水凝胶,从而加速愈合。我们首先将共轭结构设计为脂肪酸 - 氨基酸1 – amonoacid2-Apartate Am- phiphiles(CN酸– AA1 – AA2 – D),它们有可能根据每个小节的结构和特性自组装成水凝胶。然后,我们通过使用两种FMOC/TBU固相肽合成技术,基于该设计生成了14种新型结合物。我们通过串联质谱和核磁共振光谱验证了它们的结构和纯度。在低浓度(≥0.25%w / v)中形成13个结合物,但是C8酸性-ILD-NH 2显示出最佳的水凝胶化,并进一步研究了。扫描电子显微镜表明,C8酸性NH 2形成纤维网络结构和迅速形成的水凝胶,这些水凝胶在磷酸盐缓冲盐水中稳定(pH 2-8,37°C),这是一种典型的病理生理条件。注射和流变学研究表明,水凝胶表现出重要的伤口治疗特性,包括注射性,剪切稀疏,快速再凝胶和与伤口兼容的力学(例如Moduli g'''和g',g',〜0.5-15 kpa)。C8酸-ILD-NH 2(2)水凝胶显着加速了C57BL/6J小鼠上三级烧伤伤口的愈合。在一起,我们的发现证明了CN脂肪酸-AA1 – AA2-D分子模板的潜力,以形成能够促进三级燃烧的伤口愈合的水凝胶。
通过化学蒸气沉积(CVD)在CU(111)底物上生长的石墨烯开放表面的部分氢化,导致形成由界面C-Cu共价键合稳定的晶体Sp³sp³杂交碳单层。这种过渡是可逆的,加热几乎可以完全恢复原始的石墨烯 - 铜结构。石墨烯-CU系统的特征是弱的范德华相互作用,这是产生C-Cu键合的第一个转换。通过广泛的光谱表征(拉曼,X射线光电子,X射线吸收精细的结构和价频段光发射光谱)和基于密度功能理论(DFT)的理论分析),我们发现弱范德尔(dft通过加热回到其最初的物理状态。对石墨烯-CU相互作用的这种可逆控制为基于石墨烯的设备设计和操纵开辟了新的途径。此外,这种含有C-金属底物键的Sp³杂交碳单层可能会成为大区域钻石膜生长的种子层。
摘要:分支酸变位酶 (CM) 长期以来一直用作计算化学中基准测试新方法和工具的模型系统。尽管这些酶在文献中占有重要地位,但活化焓和熵在催化分支酸转化为预苯酸盐方面所起的作用程度仍有待商榷。了解这些参数是充分理解分支酸变位酶机制的关键。在本研究中,我们利用一系列温度下的 EVB/MD 自由能扰动计算,使我们能够从单功能枯草芽孢杆菌 CM 和铜绿假单胞菌的混杂酶异分支酸丙酮酸裂解酶催化的反应的活化自由能的阿伦尼乌斯图中提取活化焓和熵。与未催化反应相比,我们的结果表明,两种酶催化反应的活化焓均显著降低,而对活化熵的影响相对较小,表明酶催化的 CM 反应是焓驱动的。此外,我们观察到枯草芽孢杆菌的单功能 CM 比其混杂对应物更有效地催化此反应。过渡态反应途径的结构分析支持了这一点,从中我们确定了解释反应焓驱动性质以及两种酶之间效率差异的关键残基。
b'show电子特性,从半导体到超导。[4]分层TMDC的整体结构由堆叠的X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X93X三明治组成,这些三明治通过van der waals相互作用将其固定在一起。[5,6]由于与内部的共价键相比,层间相互作用的弱点,因此单个X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X平板(也称为单层或单层)可以在相关的方式中隔离。主多型型为1T,2H和3R,其中字母数字代码指示X \ Xe2 \ X80 \ X93M \ X93M \ Xe2 \ X80 \ X80 \ X93X三明治每单位单元单元格以及结构对称性(H = H = Hexagonal,T = Totragonal,R = Totragonal,R = Rhombohed)。[5] MOS 2是层状TMDC低毒性的典型示例。[7] 2H(或单层特定情况下的1H)和1T是MOS 2的最探索类型。2H MOS 2具有三角骨结构,在热力学上是稳定的,可以在自然界中作为钼矿物矿物质。[8]当散装2H MOS 2缩小到1H单层时,它会从'
对可持续清洁能源的需求推动了热电 (TE) 材料的发展,这种材料可将热能直接转化为电能并实现分布式冷却。[1–3] 能量转换效率通过无量纲性能系数 zT = S 2 σ T / ( κ ele + κ lat ) 来衡量,其中 S 、σ 、T 、κ ele 和 κ lat 分别为塞贝克系数、电导率、绝对温度、电子热导率和晶格热导率。[4–8] 尽管 zT 的表达式看起来很简单,但增加其值却是一项艰巨的任务。具体而言,虽然在半导体中通常获得较高的 S,但在金属中会发现较大的 σ ,而在非晶态材料中会实现较低的 κ lat 。[6,9] 这已经表明优化要求很复杂。显然,相关优化参数 S 、 σ 和 κ ele 紧密相关。这阻碍了 zT 的改善和优质热电材料的识别。因此,
摘要:为了弥合 IC 级和板级制造之间的技术差距,文献中已经展示了一种完全添加的选择性金属化。在本文中,概述了制造过程中涉及的每个步骤的表面特性,并进行了表面的块状金属化。该生产技术使用聚氨酯作为环氧树脂,并使用专有的接枝化学方法在 FR-4 基板上用共价键对表面进行功能化。然后使用化学镀铜 (Cu) 浴对表面进行金属化。分析了使用光化激光束和钯 (Pd) 离子沉积 Cu 的这种逐层生长。采用最先进的材料表征技术来研究界面处的工艺机制。进行了密度泛函理论计算以验证层间共价键的实验证据。这种制造方法能够在相当低的温度下以选择性的方式向印刷电路板添加金属层。本文对使用材料块状沉积的工艺进行了完整的分析。