但是,由于在我们的房屋示例中,“向量” x实际上是一个矩阵x(x列中列出的许多点的集合),因此我们需要使用翻译矩阵B,由(相同)翻译向量b的许多副本组成。
思想政治在线教学是思想政治理论教学与人工智能信息技术相融合的新生事物。为了有效提高思想政治在线教学质量,本文旨在对大数据背景下人工智能技术在思想政治在线课堂系统中的应用进行深入研究。本文首先从系统硬件架构、软件架构两个方面阐述了思想政治在线系统的总体架构,然后详细讨论了在线系统的功能设计和数据库的结构。本文提出一种基于尺度仿射变换和课程数据信息空间重构的数据挖掘算法,构建了思想政治在线课堂系统的数据结构模型,利用尺度仿射变换对课程数据进行融合,对融合后的课程数据进行空间重构,在重构的空间中提取思想政治在线课堂系统中课程数据的高阶特征,完成思想政治课程的数据挖掘。实验表明,采用该方法构建的思想政治在线课堂系统在用户满意度、教师操作熟练度等方面均优于传统方法构建的思想政治在线课堂系统,能够有效提高思想政治在线教学质量。
可持续性挑战本质上涉及对多个相互竞争的目标的考虑。帕累托边界(即所有最优解的集合,这些解不能针对一个目标进行改进,否则会对另一个目标产生负面影响)是应对可持续性挑战的关键决策工具,因为它强调了相互冲突的目标之间的内在权衡。我们的研究动机是亚马逊河流域水电战略规划,亚马逊河流域是地球上最大、生物多样性最丰富的河流系统之一,增加能源生产的需求与最大限度地减少有害环境影响的迫切要求不谋而合。我们研究了一种将水电与浮动光伏太阳能电池板 (FPV) 配对的创新战略。我们提供了一种新的扩展多树网络公式,可以考虑多种水坝配置。为了应对扩大帕累托优化框架以解决整个亚马逊河流域的多个目标的计算挑战,我们通过两项改进进一步增强了树形结构网络中帕累托边界的最先进的算法。我们引入了由子边界引起的仿射变换来计算帕累托优势,并提供了合并子树的策略,从而显著提高了优势解决方案的修剪率。我们的实验表明,在保持最优性保证的同时,速度显著提高,在某些情况下甚至提高了一个数量级以上,从而使我们能够更有效地近似帕累托边界。此外,我们的研究结果表明,当将混合水电与 FPV 解决方案配对时,帕累托边界的能量值会显著向更高的方向转变,从而有可能在减轻不利影响的同时扩大能源生产。
量子计算机利用量子力学原理进行计算,在许多计算问题上比经典计算机更强大(Shor 1994;Grover 1996)。许多量子机器学习算法被开发出来,例如量子支持向量机、量子主成分分析和量子玻尔兹曼机(Wiebe 等 2012;Schuld 等 2015a;Biamonte 等 2017;Rebentrost 等 2014;Lloyd 等 2014;Amin 等 2018;Gao 等 2018),这些算法被证明比经典版本更有效。近年来,DNN(LeCun et al. 2015 )成为机器学习中最重要和最强大的方法,广泛应用于计算机视觉(Voulodimos et al. 2018 )、自然语言处理(Socher et al. 2012 )等许多领域。DNN的基本单元是感知器,它由一个仿射变换和一个激活函数组成。激活函数的非线性和深度赋予了DNN很多的表示能力
在数值约束优化的背景下,我们研究了通过增强拉格朗日方法处理约束的随机算法,特别是进化策略。在这些方法中,原始约束问题被转变为无约束问题,优化函数是增强拉格朗日,其参数在优化过程中进行调整。然而,使用增强拉格朗日会破坏进化策略的一个核心不变性,即对目标函数严格递增变换的不变性。尽管如此,我们形式化地认为,具有增强拉格朗日约束处理的进化策略应该保持对目标函数严格递增仿射变换和约束缩放的不变性——严格递增变换的一个子类。我们表明这种不变性对于这些算法的线性收敛非常重要,并表明这两个属性是如何联系在一起的。
传统上,可解释的人工智能寻求提供高性能黑盒模型(例如深度神经网络)的解释和可解释性。由于此类模型的复杂性很高,因此对其进行解释仍然很困难。另一种方法是强制深度神经网络使用人类可理解的特征作为其决策的基础。我们使用岩石类型的自然类别域测试了这种方法。我们将使用 Resnet50 的迁移学习黑盒实现的性能与首先训练以预测专家识别的特征然后被迫使用这些特征对岩石图像进行分类的网络的性能进行了比较。这个特征约束网络的性能与无约束网络的性能几乎相同。此外,部分受限的网络被迫压缩为少数未使用专家特征进行训练的特征,这不会导致这些抽象特征变得可理解;尽管如此,可以发现这些特征的仿射变换与专家可理解的特征很好地一致。这些发现表明,让人工智能本质上可理解并不一定以牺牲性能为代价。© 2022 作者。由 ELSEVIER B.V. 出版。这是一篇根据 CC BY-NC-ND 许可开放获取的文章(https://creativecommons.org/licenses/by-nc-nd/4.0)由 KES International 科学委员会负责同行评审 关键词:不言自明的人工智能;深度神经网络;迁移学习;XAI;类别学习
仿射配准在全面的医学图像配准流程中不可或缺。然而,只有少数研究关注快速而鲁棒的仿射配准算法。这些研究中大多数利用卷积神经网络(CNN)来学习联合仿射和非参数配准,而对仿射子网络的独立性能探索较少。此外,现有的基于 CNN 的仿射配准方法要么关注局部错位,要么关注输入的全局方向和位置来预测仿射变换矩阵,这些方法对空间初始化很敏感,并且除了训练数据集之外表现出有限的通用性。在本文中,我们提出了一种快速而鲁棒的基于学习的算法,即粗到精视觉变换器(C2FViT),用于 3D 仿射医学图像配准。我们的方法自然地利用了卷积视觉变换器的全局连通性和局部性以及多分辨率策略来学习全局仿射配准。我们对 3D 脑图谱配准和模板匹配归一化方法进行了评估。综合结果表明,我们的方法在配准精度、稳健性和通用性方面优于现有的基于 CNN 的仿射配准方法,同时保留了基于学习的方法的运行时优势。源代码可在 https://github.com/cwmok/C2FViT 上找到。