泰晤士报商学院名誉教授 2022 – 至今 工程与公共政策名誉教授 泰晤士报商学院教授 2010 – 2022 卡内基梅隆大学电力行业中心联合主任 工程与公共政策附属教授 泰晤士报商学院副研究员 卡内基梅隆大学电力行业中心执行主任 工程与公共政策杰出服务教授iNetworks, LLC 风险投资董事总经理兼首席技术官卡内基自然历史博物馆馆长美国国家航空航天局宇航员四次航天飞机任务。其中两次任务涉及与日本和俄罗斯的合作;一次涉及两次太空行走。任务支持分公司负责人 任务控制中心灯光控制员 加州理工学院喷气推进实验室,加利福尼亚州帕萨迪纳市 光学设施科学经理 桌山天文台小组组长 光学天文学小组组长 地球与空间科学部行星科学家 哈佛大学应用科学部助理主任 行星成像计算机中心创始主任 地球与行星物理中心员工 麻省理工学院 激光博士后研究员光谱学
“我们已经重新启动了Purvis植物,但是鉴于缺乏电力和洪水,可能需要几天的时间,直到我们可以安全地完成损害评估,制定计划重新启动的计划,并确定暂时关闭的设施,并确定飓风的运作能力,” Rain Carbon Carbon Gerry Gerry Gerry Sweeney说:”“这包括向客户提供产品以及购买原材料,因为我们了解到至少有两个主要的炼油厂供应商可能受到了重大影响。”
在当今的不对称环境中,重要的是,排雷行动部门要做好准备,应对冲突带来的各种威胁,包括简易爆炸装置 (IED) 带来的威胁。传统上,国际排雷行动标准 (IMAS) 提供的指导反映了这样一个事实:排雷行动主要侧重于减轻按照正式规定的制造标准生产和组装的爆炸物 (EO) 带来的风险。因此,制定此标准是为了补充现有的排雷行动指导。它不应被视为一份独立的文件,而应被视为 IMAS 框架的一个组成部分,该框架在应用时可确保所开展活动的安全、质量和效率,从而为排雷行动提供信心。因此,下文中对其他标准的引用应被视为构成标准这一部分的规范性规定。 IED 是指以临时方式放置或制造的装置,其中包含爆炸性、破坏性、致命性、有毒性、燃烧性、烟火性材料或旨在破坏、毁坏、分散或骚扰的化学品。它们可能包含军用物资,但通常由非军用部件设计而成 1 。根据定义,IED 构造没有制造标准;此外,制造
会议演讲SPIE天文仪器,日本横滨(2024)线强度映射,伊利诺伊州乌尔巴纳 - 冠军(2024年),使用宇宙背景和低表面亮度宇宙,ASPEN,CO(2024),CO(2024)当前和将来4月会议,纽约,纽约,纽约(2022)18次低温探测器,意大利米兰(2019)SPIE天文学仪器,德克萨斯州奥斯汀(2018)CMB-S4合作会议,马萨诸塞州波士顿(2017)17th低温探测器探测器,日本库鲁姆,日本库鲁姆(2017)Spie Astronomical Instrumination,Edinonolonolication,Edinonologine Kingdom,United Kinginburgh,2016年(2016)
泰晤士报商学院名誉教授 2022 – 至今 工程与公共政策名誉教授 泰晤士报商学院教授 2010 – 2022 卡内基梅隆大学电力行业中心联合主任 工程与公共政策附属教授 泰晤士报商学院副研究员 卡内基梅隆大学电力行业中心执行主任 工程与公共政策杰出服务教授iNetworks, LLC 风险投资董事总经理兼首席技术官 卡内基自然历史博物馆馆长 美国国家航空航天局 一名宇航员 四次航天飞机任务。其中两次任务涉及与日本和俄罗斯的合作;一次涉及两次太空行走。任务支持分公司负责人 任务控制中心灯光控制员 加州理工学院喷气推进实验室,加利福尼亚州帕萨迪纳市 光学设施科学经理 桌山天文台小组组长 光学天文学小组组长 地球与空间科学部行星科学家 哈佛大学应用科学部助理主任 行星成像计算机中心创始主任 地球与行星物理中心员工 麻省理工学院 激光博士后研究员光谱学
泰晤士报商学院名誉教授 2022 – 至今 工程与公共政策名誉教授 泰晤士报商学院教授 2010 – 2022 卡内基梅隆大学电力行业中心联合主任 工程与公共政策附属教授 泰晤士报商学院副研究员 卡内基梅隆大学电力行业中心执行主任 工程与公共政策杰出服务教授iNetworks, LLC 风险投资董事总经理兼首席技术官 卡内基自然历史博物馆馆长 美国国家航空航天局 一名宇航员 四次航天飞机任务。其中两次任务涉及与日本和俄罗斯的合作;一次涉及两次太空行走。任务支持分公司负责人 任务控制中心灯光控制员 加州理工学院喷气推进实验室,加利福尼亚州帕萨迪纳市 光学设施科学经理 桌山天文台小组组长 光学天文学小组组长 地球与空间科学部行星科学家 哈佛大学应用科学部助理主任 行星成像计算机中心创始主任 地球与行星物理中心员工 麻省理工学院 激光博士后研究员光谱学
Joint CQSE and CASTS Seminar 2020 December 25, Friday TIME Dec. 25, 2020, 2:30~3:30pm TITLE Beyond the Photonics, Quantum Information Technology & Industry Emerge and Start Revolution & Evolution SPEAKER Murphy Lin Director, Photonics Industry & Technology Development Association PLACE Rm104, Chin-Pao Yang Lecture Hall, CCMS & New Physics Building, NTU Outline: Introduction of Photonics Industry & Technology Development Association, PIDA光的历史视图,从光子,光波,电磁波,量子,波颗粒二元性到波功能,以及经典的量子和现代量子。为什么量子技术是下一个时代?量子技术概述和应用 - 量子传感,量子通信,量子计算。什么是量子外围设备?光子源,光子检测器,量子记忆和中继器等。霸权在达到“量子至上”的作用是什么?传记简介:林颖毅墨菲林
Irina Kabakova博士 副教授,光学物理和数学和物理科学学院的副主任,UTS LinkedIn |出版物|联系日期2024年1月24日,星期五12:00至1:00 pm位置S 105标题:用于机械生物学和生物医学摘要的Brillouin显微镜:Brillouin显微镜正在快速开发有关生物物理学,光学,声学,声学和机械生物学相交的新研究领域。 该技术基于非弹性Brillouin光散射的物理现象,在与材料中的GHz压力波相互作用后,光改变了其频率。 光频率的变化,所谓的布里鲁因频移,与正在测试的材料的机械性能相关,因此可以使用微观分辨率,无物理接触和无损害来推断样品中机械性能的分布。 这些特征使布里鲁因显微镜成为研究细胞和组织机械生物学以及原位绘制微力特性的理想技术。 在这次演讲中,我将主要关注布里鲁因显微镜的生物学和生物医学应用,从组织工程到了解癌症和呼吸道疾病等疾病的机械表现。 我还将分享我的实验室在开发纤维综合探针方面的最新进展,这些探针可以将技术扩展到内窥镜应用。 bio:伊琳娜·卡巴科娃(Irina Kabakova)博士是光学物理学的副教授,也是犹他州数学和物理科学学院的学校(教育与学生)副校长。Irina Kabakova博士副教授,光学物理和数学和物理科学学院的副主任,UTS LinkedIn |出版物|联系日期2024年1月24日,星期五12:00至1:00 pm位置S 105标题:用于机械生物学和生物医学摘要的Brillouin显微镜:Brillouin显微镜正在快速开发有关生物物理学,光学,声学,声学和机械生物学相交的新研究领域。 该技术基于非弹性Brillouin光散射的物理现象,在与材料中的GHz压力波相互作用后,光改变了其频率。 光频率的变化,所谓的布里鲁因频移,与正在测试的材料的机械性能相关,因此可以使用微观分辨率,无物理接触和无损害来推断样品中机械性能的分布。 这些特征使布里鲁因显微镜成为研究细胞和组织机械生物学以及原位绘制微力特性的理想技术。 在这次演讲中,我将主要关注布里鲁因显微镜的生物学和生物医学应用,从组织工程到了解癌症和呼吸道疾病等疾病的机械表现。 我还将分享我的实验室在开发纤维综合探针方面的最新进展,这些探针可以将技术扩展到内窥镜应用。 bio:伊琳娜·卡巴科娃(Irina Kabakova)博士是光学物理学的副教授,也是犹他州数学和物理科学学院的学校(教育与学生)副校长。副教授,光学物理和数学和物理科学学院的副主任,UTS LinkedIn |出版物|联系日期2024年1月24日,星期五12:00至1:00 pm位置S 105标题:用于机械生物学和生物医学摘要的Brillouin显微镜:Brillouin显微镜正在快速开发有关生物物理学,光学,声学,声学和机械生物学相交的新研究领域。该技术基于非弹性Brillouin光散射的物理现象,在与材料中的GHz压力波相互作用后,光改变了其频率。光频率的变化,所谓的布里鲁因频移,与正在测试的材料的机械性能相关,因此可以使用微观分辨率,无物理接触和无损害来推断样品中机械性能的分布。这些特征使布里鲁因显微镜成为研究细胞和组织机械生物学以及原位绘制微力特性的理想技术。在这次演讲中,我将主要关注布里鲁因显微镜的生物学和生物医学应用,从组织工程到了解癌症和呼吸道疾病等疾病的机械表现。我还将分享我的实验室在开发纤维综合探针方面的最新进展,这些探针可以将技术扩展到内窥镜应用。bio:伊琳娜·卡巴科娃(Irina Kabakova)博士是光学物理学的副教授,也是犹他州数学和物理科学学院的学校(教育与学生)副校长。她专门研究基于Brillouin光散射的新型显微镜技术,这些技术可以直接应用于微观上的细胞和组织的局部可压缩性和粘弹性。她还对成像设置的光子整合和微型化感兴趣,这将使实验室技术转换为临床使用。作为一名敬业的教育者,伊琳娜(Irina)为UTS物理学学士学位(光学,医疗设备和诊断,医学成像技术)开发了多种教学计划做出了贡献。她是生物医学材料和设备研究所(IBMD@uts)的核心成员。迄今为止,她帮助吸引了总计超过7000万美元的研究资金,这是一项相对较短的科学生涯的重大成就。她是澳大利亚研究委员会量子生物技术卓越中心(QUBIC)和光学微型群岛的首席研究员,用于突破科学(COMBS)。