方法 • 开发了生物信息学流程来识别和确定全基因组基因间整合位点的优先顺序,并筛选了引导 RNA(gRNA)切割效率、基因盒整合效率、由此产生的细胞适应性和 GFP 表达水平的位点,• 构建了着陆垫系统以实现在一轮转化中多个基因或基因的多拷贝的整合,• 通过整合多个拷贝的 5-氨基乙酰丙酸合酶来产生 5-氨基乙酰丙酸(5-ALA)和使用单个 gRNA 产生琥珀酸的生物合成途径,在 I. orientalis 中展示了该系统。
非传统酵母东方伊萨酵母 (Issatchenkia orientalis) 的强健特性使其能够在高酸性条件下生长,因此,人们对使用多种碳源生产有机酸的兴趣日益浓厚。最近,东方伊萨酵母的遗传工具箱的开发,包括附加型质粒、多个启动子和终止子的特征以及 CRISPR-Cas9 工具,简化了东方伊萨酵母的代谢工程工作。然而,由于缺乏有效的多拷贝整合工具,多重工程仍然受到阻碍。为了促进通过多重 CRISPR-Cas9 介导的基因组编辑构建大型复杂代谢途径,我们开发了一条生物信息学流程来识别和确定全基因组基因间位点的优先级,并表征了位于 21 个基因间区域的 47 个 gRNA。对这些位点进行了向导 RNA 切割效率、基因盒的整合效率、由此产生的细胞适应度和 GFP 表达水平的筛选。我们进一步利用来自这些已充分表征的基因座的组件开发了一种着陆垫系统,该系统可帮助利用单个引导 RNA 和用户选择的多个修复模板整合多个基因。我们已经证明了利用着陆垫同时将 2、3、4 或 5 个基因整合到目标基因座中,效率超过 80%。作为概念验证,我们展示了如何通过一步整合多个位点的五个基因拷贝来提高 5-氨基乙酰丙酸的产量。我们进一步证明了该工具的效率,即利用单个引导 RNA 和五个不同的修复模板整合五个基因表达盒,构建了琥珀酸生产代谢途径,从而在批量发酵中生产出 9 g/L 的琥珀酸。这项研究证明了单个 gRNA 介导的 CRISPR 平台在非传统酵母中构建复杂代谢途径的有效性。该着陆垫系统将成为 I. orientalis 代谢工程的宝贵工具。
背景和目标:神经反馈 (NF) 是一种允许用户自我调节大脑活动模式的范例。它采用闭环脑机接口 (BCI) 系统实现,该系统实时分析用户的大脑活动并提供持续反馈。该范例具有极大的兴趣,因为它有可能成为治疗非退行性脑部疾病的非药物和非侵入性替代方法。然而,目前可用的 NF 框架有几个局限性,例如缺乏各种实时分析指标或过于简单的训练场景可能会对用户表现产生负面影响。为了克服这些限制,这项工作提出了 ITACA:一种用于设计、实施和评估 NF 训练范例的新型开源框架。方法:ITACA 的设计易于使用、灵活且具有吸引力。具体而言,ITACA 包括三种不同的游戏化训练场景,可选择五种大脑活动指标作为实时反馈。其中,基于功能连接和网络理论的新型指标脱颖而出。它与五种不同的计算机化版本的广泛认知评估测试相辅相成。为了验证所提出的框架,进行了计算效率分析和侧重于额叶内侧 θ 调制的 NF 训练协议。结果:效率分析证明,所有实施的指标都允许以最佳反馈更新率进行 NF 会话。此外,实施的 NF 协议产生了支持在 NF 研究中使用 ITACA 的结果。结论:ITACA 实施了多种功能来设计、开展和评估 NF 研究,目的是帮助研究人员扩展当前最先进的 NF 培训。
经认可的被动式房屋认证机构 - 经被动式房屋研究所或美国被动式房屋研究所认可的被动式房屋认证机构。经认可的被动式房屋认证机构名单可在 www.passivehouse.com 和 www.phius.org 上找到。 适应性再利用 - 将建筑物重新用于新的许可用途或改变居住类型。 ASHRAE 90.1。美国采暖、制冷与空调工程师学会 (ASHRAE) 出版的题为“ANSI/ASHRAE/IES 标准 90.1,除低层住宅建筑外的建筑能源标准”的出版物。在多个条款中,指定了标准的具体印刷,例如 ASHRAE 90.1-2013。 生物质 - 经过加工和燃烧以通过直接热能提供能量(特别是用于空间加热)的有机材料。用于空间供暖的生物质包括木材、颗粒和碎片。建筑热包围层 – 隔热外墙(地面以上和以下)、地板、天花板、屋顶和任何其他包围供暖空间或在供暖空间和非供暖空间之间提供边界的建筑元素组件。商业建筑 – 另请参阅混合用途建筑。任何未包含在住宅建筑定义中的建筑。社区可再生能源设施:根据适用的纽约州和地方公用事业法规和规则,有资格作为社区能源设施的场外可再生能源系统或设施。设计专业人员 – 在纽约州执业的专业工程师 (PE) 或注册建筑师 (RA)。
感谢您有机会就纽约州的帮助我(HMG)计划提交证词,以及针对纽约州儿童和家庭的初级预防服务的至关重要。tots的文档致力于确保儿童的健康发展和未来的成功。我们将儿童的医生和社区召集在一起,以改造实践,优化育儿,赋予家庭能力并加强系统。文档在HMG,作为HMG长岛和州一级的组织实体方面扮演着两国角色,是全州四个现有HMG站点的召集人,同时支持有兴趣在纽约开设新的HMG社区的社区。HMG目前在整个州的17个县运营,总部位于长岛,门罗县/手指湖,奥恩达加县和整个纽约。我们感到失望的是,执行预算仅重新申请去年的200,000美元投资,并且没有分配持续资金来帮助我成长。(我们要指出的是,重新批准仅是因为纽约州尚未分配初始投资 - 不是因为HMG不需要。)
摘要。背景/目标:从抗癌活性方面确定三个基于伊萨蛋白的支架的最佳。材料和方法:基于伊萨蛋白的支架的合成是通过反应形成席夫碱的。由瑞士目标预测工具和Autodock Vina进行分子对接组成。使用WST1生存力测定法确定抗癌活性和细胞毒性。结果:合成了三个支架(IA,IB和IC),并以良好的反应产率确认。瑞士目标预测工具显示了激酶的趋势。分子对接测定法证明IC对CDK2的亲和力更高。抗癌活性测定法被认为是针对癌细胞系的最活跃的。细胞毒性导致非癌细胞的细胞毒性表明缺乏选择性。结论:在抗癌活性方面,支架IC被确定为最好的,这些作用可能是由于CDK2的抑制作用所致,如分子对接所证明的那样。
许多平台化学品可以由微生物从可再生生物质中生产,其中有机酸占很大一部分。然而,对由此产生的低 pH 生长条件的不耐受仍然是微生物工业化生产有机酸的挑战。Issatchenkia orientalis SD108 是一种很有前途的工业化生产宿主,因为它可以耐受低至 pH 2.0 的酸性条件。为了系统地评估这种非模型酵母的代谢能力,我们为 I. orientalis SD108 开发了一个基因组规模的代谢模型,涵盖 850 个基因、1826 个反应和 1702 种代谢物。为了改进模型的定量预测,通过实验确定并实施了生物体特定的大分子组成和 ATP 维持要求。我们检查了它的网络拓扑结构,包括必需基因和通量耦合分析,并与酿酒酵母的 Yeast 8.3 模型进行了比较。我们探索了碳底物的利用,并检查了生物体生产工业相关琥珀酸的潜力,利用 OptKnock 框架来识别将目标化学物质的生产与生物质生产结合起来的基因敲除。基因组规模代谢模型 iIsor 850 是一个数据支持的精选模型,可以为过度生产的基因干预提供信息。
- 高级数据结构和算法、计算机建模和仿真、高性能计算、数值偏微分方程、计算线性代数、高级线性规划、数字图像处理、人工智能、数字图像处理1、计算机视觉:数字图像处理2、数值优化、随机过程(统计建模)和图像处理中的特殊主题。