逐步淘汰航运业的化石燃料对于减少温室气体排放至关重要。基于可再生能源的合成燃料是可持续海运业的一个有前途的选择,可再生甲醇是最广泛考虑的能源载体之一。然而,可再生甲醇的供应仍然有限,而且与传统燃料相关的成本明显高于传统燃料,这也是因为燃料合成必须依赖二氧化碳作为资源。通过使用船上碳捕获,可以避免燃烧过程中二氧化碳的释放,这种闭式循环减少了对碳源的需求。本文通过分析使用内燃机和相连的燃烧前和燃烧后碳捕获技术的整体船舶能源系统来研究这种情况。通过建立一个混合整数优化框架来优化船舶推进系统的设计和运行,研究了这些技术对完全可再生能源系统的技术经济性能的影响。所选案例研究的推进需求包括在波罗的海运营的渡轮的典型运行概况。将捕获情况与仅基于可再生甲醇的系统进行比较,可以发现封闭式碳循环系统具有显著的成本优势。基线情景的年成本降低了近 20%,燃烧后情况下的总捕获率为 90%,燃烧前情况下的总捕获率为 40% 左右。广泛的敏感性分析表明,这些成本优势在各种技术和经济边界条件下都具有稳健性。在燃烧前情况下,工艺热需求减少与发动机热供应增加相结合可能会使捕获率超过 90%。结果表明,将可再生燃料与船上碳捕获相结合可以为成本效益高、可持续的航运创造机会。
摘要 本文探讨了人工智能 (AI) 在提高可再生能源系统效率和功能方面的变革性作用,重点关注太阳能和风能优化。太阳能和风能作为全球能源转型的关键参与者,不仅对环境有益,而且具有社会变革性,为服务不足的社区提供负担得起的能源解决方案。例如,巴基斯坦的低收入家庭越来越多地采用太阳能,因为与传统能源相比,太阳能价格更便宜(亚洲开发银行 [ADB],2022 年)。本文重点介绍了预测性维护、能源产出优化和与能源存储集成等人工智能应用,强调了它们提高可再生能源系统可靠性和可持续性的潜力。具体的例子包括人工智能驱动的太阳能电池板跟踪系统将效率提高 20%(麻省理工学院 [MIT],2021 年),谷歌的 DeepMind 提前 36 小时预测风力发电量,将价值提高 20%(谷歌,2019 年),丹麦风电场利用人工智能优化布局,实现能源产量增加 12%(丹麦技术大学,2020 年)。这项研究强调了人工智能不仅在推动技术创新方面发挥的作用,而且在解决全球能源不平等方面也发挥着作用。
为口腔 - 芯片模型创建基本结构涉及设计一个微流体芯片,该微流体芯片复制必需的组件并创建模拟口腔复杂性的微环境。微流体芯片可以由各种材料制成,包括玻璃,硅和聚合物。微流体芯片的标准制造技术包括软光刻,光刻图和注射成型。这些方法可以在芯片上创建复杂的微观结构和通道。微流体芯片应复制口腔的关键成分,包括代表各种口腔组织的细胞培养室,例如上皮细胞,成纤维细胞和唾液腺细胞,这些细胞包含在细胞外基质中。细胞外基质可以结合水凝胶或其他材料,以提供结构支撑和细胞附着和生长的基板。结合灌注系统可模拟血液,使营养素,氧气和药物的递送2,3。
近年来在肝病学上取得了显着进步,但巨大的挑战和未满足的需求仍然存在。1个慢性肝脏疾病施加重大的公共卫生负担,肝细胞癌(HCC)是全球癌症死亡率的第四个主要原因。2种风险评估,筛查,预后和治疗优化的缺陷有助于次优的患者护理。然而,肝病领域随时准备在新兴的研究和新工具上取得成功,从而增强了对肝病机制的理解,卓越的预后准确性以及更量身定制的治疗递送。将这些创新从长凳转换为床边将是改善肝脏疾病患者的临床管理和结果的关键。3最紧迫的肝病需求之一是提高预后精度和HCC的治疗选择。作为最常见的原发性肝癌,HCC占了癌症的大量死亡率。4优化和个性化的HCC疗法需要准确预测治疗反应和整体预后。5研究表明,α-五蛋白(AFP)和成像特征等生物标志物的预后效用,但是结合多种方式可以进一步完善结果预测。一个例子是MAPS-Crafity评分,它吸收了临床变量,AFP水平和CT/MRI发现,以预测高级HCC中的免疫疗法和靶向治疗反应的系统。6-10包括变压器模型在内的机器学习方法还表现出有望解剖复杂数据集,以确定局部区域处理后的HCC预后,例如射频消融(RFA)。
1. 易用性:咨询非技术学者,了解他们对每种工具的熟悉程度 2. 程序操作系统:多个操作系统上的程序分别在每个操作系统上进行测试。仅列出可运行的操作系统 3. 维护/更新:这些程序是否仍在更新也通过文档注明
如何引用这篇文章 - 美国心理学会 (APA) Santos, GC, Barboza, F., Veiga, ACP, & Gomes, K 。 (2024 年 7 月/9 月)。利用人工智能进行投资组合优化
摘要:镍基高温合金具有优异的耐腐蚀和耐高温性能,在能源和航空航天工业中广受欢迎。镍合金的直接金属沉积 (DMD) 已达到技术成熟度,可用于多种应用,尤其是涡轮机械部件的修复。然而,DMD 工艺过程中的零件质量和缺陷形成问题仍然存在。激光重熔可以有效地预防和修复金属增材制造 (AM) 过程中的缺陷;然而,很少有研究关注这方面的数值建模和实验工艺参数优化。因此,本研究的目的是通过数值模拟和实验分析来研究确定重熔工艺参数的效果,以优化 DMD 零件修复的工业工艺链。热传导模型分析了 360 种不同的工艺条件,并将预测的熔体几何形状与流体流动模型和选定参考条件下的实验单轨观测值进行了比较。随后,将重熔工艺应用于演示修复案例。结果表明,模型可以很好地预测熔池形状,优化的重熔工艺提高了基体和 DMD 材料之间的结合质量。因此,DMD 部件制造和修复工艺可以从此处开发的重熔步骤中受益。
摘要这项研究的目的是探索各种方法如何影响反向供应链,同时考虑到收集和拆卸寿命终止产品所涉及的运营复杂性。主要问题是需要有效的卡车路由以及当不可用的优化模型时出现的昂贵,耗时的手动拆卸程序。部分最小二乘结构方程建模(PLS-SEM)是用于研究供应链关系,供应链敏捷性和反向供应链策略之间相互作用的研究技术。这项研究的样本包括351位受访者。结果表明,可持续性与运营绩效以及敏捷性与可持续性之间存在牢固和积极的关系。结果表明,组织策略,反向供应关系,反向供应敏捷性和反向供应链密切相关。在伊拉克的制造业中,这项研究可以为供应链管理策略提供有用的建议,因为它是研究联系,组织战略,供应链敏捷性和反向供应链及其敏捷性以及供应链链接对关系的中介作用的研究。
摘要:工业控制系统在当今的制造系统中发挥着核心作用。在保持和提高生产能力和生产力的同时,生产系统的复杂性也随之大幅增加,并朝着更加灵活和可持续的方向发展。为了应对这些挑战,需要先进的控制算法和进一步的发展。近年来,基于人工智能 (AI) 方法的发展引起了研究和行业对未来工业控制系统的极大关注和相关性。基于人工智能的方法越来越多地被应用于各种工业控制系统层面,从单个自动化设备到复杂机器的实时控制、生产过程和整个工厂的监督和优化。因此,人工智能解决方案被应用于不同的工业控制应用,从传感器融合方法到新型模型预测控制技术,从自优化机器到协作机器人,从工厂自适应自动化系统到生产监督控制系统。本篇展望论文的目的是概述人工智能方法在不同层次上对工业控制系统的新应用,以提高生产系统的自学能力、整体性能、相关流程和产品质量、资源的最佳利用和工业系统安全性以及对不同边界条件和生产要求的适应能力。最后,讨论了主要的未决挑战和未来前景。
