您好,感谢您花时间祈祷并制定为期一年的传福音策略。这本练习册旨在帮助您制定一项策略,您可以使用它来向社区传播基督。这本练习册旨在分三个阶段完成。1. 虔诚地阅读和审查2. 第一稿计划3. 与 KBC 传福音助理磋商在举行磋商会议后,您需要请主要领导人来征求反馈意见并进行审查。在主要领导人有机会发表意见后,您就可以准备向教会介绍该策略了。开始您的传福音策略可能令人生畏。所有策略都必须提前计划。《领导力的 21 条不可辩驳的法则》的作者约翰·麦克斯韦尔 (John Maxwell) 使用了“提前计划”这个词来表示策略制定。 • 预先确定行动方案 • 列出目标 • 调整优先事项 • 通知关键人员 • 留出时间接受 • 付诸行动 • 预计问题 • 始终指向成功 • 每日审查您的计划 我祈祷您的传福音策略不只是纸面上的文字,而是一个真正的计划,可以让人们信奉基督。 肯尼·雷格 270-314-2060 kenny.rager@kybaptist.org
作者:DM NAFUS · 1993 · 被引用 6 次 — 摘要 - 超过 100 种寄生和捕食性昆虫已被有意引进关岛,用于生物防治害虫。流行。
图1。A)在PT/INGA/N -SI/SIO/SIO X/PT下,AO-ECL发射(AO-ECL)的方案是由EXC光子吸收触发的。b)电荷传输机制的方案,导致可见的440-nm光子在固体界面处产生。c)在PT/INGA/INGA/N -SI/SIO X/PT(CYAN曲线)和电解质吸收(灰色曲线)时,在PT/INGA/N -SI/N-SIO/SIO X/PT(灰色曲线)时,在PT/INGA/N -SI/N-SI/N-SIO/SIO X/PT(灰色曲线)处的IR 850 nm LED(棕色曲线)的归一化光谱。si bandGap由虚线的黑线表示,由AO-ECL诱导的波长的移位由红色箭头表示。d)N -Si/Sio X的XPS调查光谱,在涂层之前(橙色曲线)和N -SI/SIO X/PT的N -Si/Sio X/PT,在溅射2 nm厚的PT膜(粉红色曲线)后。
nipponsteel.com › 报告 › pdf PDF 1997年9月15日 — 1997年9月15日 对于保持可靠性、长寿命和... 空气至关重要。数字微压计。柔性管道。录音机。鼓风机交流电机。散热器。计算机。7 页
量子计算的发展推动了对量子网络的发展需求,以便将地理上分散的量子计算机互连 [1,2]。量子隐形传态协议可以将任意未知的量子态从一个位置传输到另一个位置 [3]。本文旨在说明如何将复杂系统的行为分解和抽象为一组较小的块,以方便理解更复杂的行为。具体来说,我们将展示如何将量子隐形传态协议(量子网络的基本元素)分解为其组成块,独立研究每个块的行为,并检查这些块的互连集合如何表现,从而简化对协议工作原理的理解。量子隐形传态协议通常被视为“神奇的”,因为它是将未知量子态从一个位置传输到另一个位置的唯一方法 [2]。我们试图揭开这种观点的神秘面纱,以表明量子隐形传态协议背后没有“魔法”。通过对量子力学块的数学抽象建立良好的理解,检查组成块的行为,研究块集合的组成,并使用大学水平的代数进行简单的数学分析,人们可以轻松理解该协议的工作原理。在本文中,我们假设读者对量子信息理论表示有基本的了解。
最近,我们目睹了量子信息科学的快速发展,这得益于量子技术革命,它使许多理论思想得以通过实验实现。对量子概念的哲学分析比以往任何时候都更加重要,这些概念在量子理论诞生之初就被引入,但从未达成共识。在这里,我分析了可以说是最奇怪的量子信息协议:量子隐形传态,即使用极少的资源传输量子态。当隐形传态论文 (Bennett et al. 1993) 的合著者 Asher Peres 被记者问到量子隐形传态是否可以像传送身体一样传送灵魂时,他回答说:“不,不是身体,只是灵魂。”隐形传态协议中传送了什么以及如何传送,仍然是有争议的问题。量子粒子的不可区分性使得 Saunders (2006) 提出了这样的问题:“量子粒子是物体吗?”但正是这种不可区分性使得隐形传态成为可能:在隐形传态协议中,粒子(“身体”)不会移动。一个地方的粒子(“灵魂”)的量子态会转移到另一个地方的粒子。如今,人们不会从一个城市被隐形传态到另一个城市,而且可以肯定地说,这种情况永远不会发生,但隐形传态协议已成为量子信息的基石之一。隐形传态的数学原理没有争议,但我们仍需要了解这一过程的矛盾特征(见 Vaidman 1994a):如何通过经典信道发送少量信息来发送需要大量信息的量子态:
双向量子隐形传态是双方交换量子信息的基本协议。具体来说,两个人利用共享资源状态以及本地操作和经典通信 (LOCC) 来交换量子态。在这项工作中,我们简要介绍了我们的配套论文 [AU Siddiqui and MM Wilde,arXiv:2010.07905 (2020)] 的贡献。我们开发了两种不同的方法来量化非理想双向隐形传态的误差,即通过归一化钻石距离和通道不保真度。然后,我们确定这两个指标给出的值对于此任务是相等的。此外,通过将 LOCC 允许的操作集放宽到完全保留部分转置正性的操作集,我们获得了非理想双向隐形传态误差的半定规划下限。我们针对一些关键示例评估了这些界限——各向同性状态和根本没有资源状态的情况。在这两种情况下,我们都找到了解析解。第二个例子为经典与量子双向隐形传态建立了基准。我们研究的另一个例子包括两个贝尔态,它们通过广义振幅衰减通道发送。对于这种情况,我们找到了误差的解析表达式,以及与前者一致的数值解,精度达到数值精度。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2023年1月19日。 https://doi.org/10.1101/2023.01.19.524776 doi:Biorxiv Preprint