• 空间段:传输层空间飞行器承载多任务模块 (M3)。BMC3 应用程序将驻留在 M3 上。• 地面段:BMC3 地面硬件用于提高处理能力、集成和测试。• 应用程序工厂 (AppFac):BMC3 AppFac 是符合国防部 DevSecOps 标准的软件工厂,用于开发和验证空间段和地面段的 BMC3 应用程序和服务。应用程序部署不依赖于 PWSA Tranche 部署。
• 空间段:传输层空间飞行器承载多任务模块 (M3)。BMC3 应用程序将驻留在 M3 上。• 地面段:BMC3 地面硬件用于提高处理能力、集成和测试。• 应用程序工厂 (AppFac):BMC3 AppFac 是符合国防部 DevSecOps 标准的软件工厂,用于开发和验证空间段和地面段的 BMC3 应用程序和服务。应用程序部署不依赖于 PWSA 分期部署。
摘要:大量能源消耗和化石燃料的用光导致了可再生能源的发展,包括太阳能,风能和潮汐。其中,太阳能电池已经通过硅太阳能电池板的显着成就得到了很好的开发,这些太阳能电池板通常用作窗户,屋顶,公共灯等。为了推动太阳能电池的应用,高度必需的灵活类型,例如分层铸造的太阳能电池(LCSC)。有机太阳能电池(OSC),钙钛矿太阳能电池(PSC)或对染料敏感的太阳能电池(DSSC)是有希望的LCSC,用于扩大太阳能在许多类型的表面上的应用。LCSC将具有成本效益,可以使大规模生产具有高度效果和稳定。LCSC的每一层对于构建太阳能电池的完整结构都很重要。在细胞结构(活动材料,电荷载体传输层,电极)中,孔传输层(HTL)在将孔传输到阳极中起重要作用。最近,来自无机,有机和有机金属材料的不同HTL已经出现,对OSC,PSC或DSSC设备的稳定性,寿命和性能产生了很大的影响。本综述总结了太阳能电池的无机,有机和有机金属HTL的最新进展。的观点和HTL发展和改进的挑战也得到了强调。
甲基铵碘化锡( )钙钛矿纳米晶体由于其带隙窄、可见光吸收系数高、比铅基对应物( )更环保,引起了研究兴趣,并成为光伏领域的后起之秀。本文提出了一种以氧化锌(ZnO)和氧化铜(CuO)为电子传输介质(ETM)和空穴传输介质(HTM)的锡基钙钛矿太阳能电池,并使用太阳能电池电容模拟器(SCAPS)工具进行数值研究。在适当的参数下,初步模拟获得了短路电流密度(Jsc)为 27.56 / 、开路电压(Voc)为 0.82 、填充因子(FF)为 59.32 % 和功率转换效率(PCE)为 13.41 %。通过改变吸收层和电子传输层的厚度,观察到ZnO和ZnO的最佳厚度分别为0.6和0.3,相应的PCE分别为14.36%和13.42%。使用优化参数进行模拟后,记录到Jsc为29.71 /,Voc为0.83,FF为61.23%,PCE为15.10%。这些值优于未经优化获得的值,这意味着通过调整钙钛矿和电子传输层可以在一定程度上提高太阳能电池的性能,同时钙钛矿太阳能电池(PSC)是一种具有相当高效率的潜在环保太阳能电池。
钙钛矿太阳能电池 (PSC) 因其高功率转换效率 (PCE) 和低制造成本而备受关注。人们采用了不同的方法来提高 PSC 的 PCE 和稳定性,例如成分工程 [1,2]、载流子传输层改性 [3] 和异质结构 [4]。最近,具有新颖结构的碳基单片钙钛矿太阳能电池 (mPSC) 已经成为以合理成本商业化大面积钙钛矿太阳能电池 (PSC) 最有前途的设计之一。此外,碳基设计无需使用 Spiro-OMeTAD 等空穴传输材料 (HTM)。由于制造成本也较低,因此可以开发出低成本的光伏系统。为了进一步提高性能,采用了加法工程方法。 mPSC 由四层连续层组成,如图 S1(支持信息)所示,包括玻璃/FTO/致密-TiO 2 /介孔-TiO 2 /介孔-ZrO 2 /碳。这些 mPSC 中填充有钙钛矿,从而分别充当吸光层。在这种设计中,钙钛矿同时充当空穴传输层 (HTL) 和吸收层 [5] 。为了提高 mPSC 的性能,人们探索了不同的技术,包括反溶剂优化 [6] 、后处理 [7] 和添加剂工程 [8] 。从上面提到的方法来看,添加剂工程非常有前景且易于使用,并且在众多
光生电荷产生范围很宽且可调,[4] 而且载流子迁移率高,扩散长度可达几微米。[5–7] 在任何光收集装置中,合适的接触对于有效收集光生电荷并将其输送到外部电路都至关重要。接触负责提供内在不对称性,以产生提取光生载流子的驱动力;[8] 这种内在不对称性可以通过动力学选择性(扩散控制)或电极之间的能量失配(漂移控制)来建立。一般的薄膜太阳能电池由活性层、夹在空穴提取阳极接触和电子提取阴极接触之间组成。在光照下,活性层内产生的电荷载流子将漂移扩散到接触处,并通过内在不对称性被提取,从而产生净光电流。有机太阳能电池的特点是载流子迁移率低、扩散长度短,因此需要在活性层上建立强大的内建电场以提高电荷提取率并避免复合。[9–11] 该电场由内建电位V bi (或接触电位) 引起,该电位源于阳极和阴极之间的功函数差异,由于有机半导体的介电常数相对较低,因此基本上不受屏蔽。相反,在钙钛矿太阳能电池中,载流子扩散长度为几微米,在没有电场的情况下,光生电荷应该能够毫不费力地穿过 200–500 纳米的活性层而不会复合。因此,只要能确保接触处的动力学选择性[12],电荷收集预计将由扩散控制[8,13],人们正在沿着这个思路达成共识。通过在电极和活性层之间采用单独的电荷传输层 (CTL) 来实现动力学选择性,从而形成 n–i–p 或 p–i–n 型器件架构,其中阳极处为空穴传输层 (HTL,p 层),阴极处为电子传输层 (ETL,n 层)。在理想情况下,这些层能够传导多数载流子,同时防止少数载流子的提取,从而为扩散驱动的电荷收集创建优先方向。在这种电荷提取要求的框架内,对于内置电位的确切作用以及负责电荷提取的驱动力的确切性质仍然存在一些猜测。
抽象材料参数变化是影响太阳能电池设备性能的主要贡献者之一,因此,使用Taguchi设计来优化材料参数以达到最大功率转换效率(PCE)。本文使用L 32(2 8)Taguchi设计讨论了使用氧化石墨烯(GO)孔传输层(HTL)的钙钛矿太阳能电池(PSC)的最佳建模。使用太阳能电池电容模拟器(SCAP)进行设备仿真,而L 32(2 8)Taguchi设计用于设备优化。最终结果表明,L 32(2 8)Taguchi设计已显着优化了设备参数,其中FTO厚度,FTO供体浓度,TIO 2厚度,TIO 2供体浓度,CH 3 NH 3 NH 3 NH 3 NH 3 PBI 3-X CL X厚度,CH 3 NH 3 NH 3 NH 3 PBI 3-X CL X供体浓度,厚度为1.厚度为1.厚度。 -3,0.03 µm,1 x 10 20 cm -3,0.9 µm,1 x 10 20 cm -3,0.03 µm和1 x 10 20 cm -3相应地。方差分析(ANOVA)表明CH 3 NH 3 PBI 3-X Cl X厚度是影响设备PCE的最主要输入参数。优化的输入参数产生的最大可达到的PCE为35.91%,信噪比(SNR)为31.11 dB。关键字:方差分析,氧化石墨烯,孔传输层,功率转换效率,信噪比
您的应用程序对Internet用户不可见,因为它们不直接在Internet上。相反,您的私有应用程序是Zscaler应用程序连接器或云连接器后面的后面,这是位于应用程序前面的虚拟机。Zscaler应用程序连接器和云连接器允许仅通过ZPA服务到达其后面的应用程序。Zscaler应用程序连接器和云连接器都是仅出站设备,将传输层安全性(TLS)隧道启动到ZScaler Zero Zero Trust Exchange(ZTE)。通信仅通过隧道与中兴通信进行处理,并删除任何入站请求。
美国太空军重点项目: 为 LEO/MEO 弹性导弹预警/导弹跟踪增加 11 亿美元 为 SDA 空间技术开发和原型第 1 部分数据传输层增加 11 亿美元 为下一代 OPIR(地面/极地)增加 2.43 亿美元,以增强全球导弹预警覆盖范围 增加 1.14 亿美元,用于开发 ESS 地面和加密段,以提供安全/可生存的 SATCOM 增加 1.08 亿美元,用于交付 2 个原型 PTS 有效载荷 从陆军向美国太空部队转移 1500 万美元,用于联合战术地面站 (JTAGS)