尽管今年该行业创下了历史新高,但电网和缺乏长期能源政策仍然是大规模可再生能源投资进一步增长的障碍。电网拥堵、不稳定的传输损耗因素和系统强度问题在 2019 年给项目开发商带来了相当大的麻烦,因为电网难以跟上向可再生能源的过渡步伐。虽然澳大利亚的能源监管机构正在努力解决这些问题,但快速解决问题对于确保行业恢复势头至关重要。这些电网问题和缺乏政策确定性都是导致 2019 年获得资金承诺的新项目数量放缓的主要因素。
本节使用的能量单位是英热单位 (BTU)、千瓦时 (kWh)、千卡和加仑。BTU 是在海平面将 1 磅水的温度升高 1 华氏度 (°F) 所需的热量。由于其他能量单位都可以转换为等效的 BTU,因此 BTU 被用作比较不同资源相关能耗的基础。kWh 是电能单位,1 kWh 约等于 3,413 BTU,其中考虑了初始转换损耗(即从一种能量,如化学能,转换为另一种能量,如机械能)和传输损耗。天然气消耗通常以立方英尺或千卡来表示;1 立方英尺天然气约等于 1,050 BTU,1 千卡代表 100,000 BTU。考虑到炼油过程中所消耗的能量,一加仑汽油/柴油分别相当于约 125,000/139,000 BTU。
摘要 - 在北极地区,从浮冰进行的水下声学测量通常需要无人遥控水听器。目的可能是设置冰下声学跟踪范围,以避免冰站产生的噪音和/或测量传输损耗。无论如何,最好使用可靠、成本低、易于操作、坚固耐用且无需维护的系统。这些理想特性可以通过使用基于改进的声纳浮标的手动部署远程水听器系统来满足。本文介绍了在北极修改、供电和手动部署 AN/SSQ-57A 声纳浮标的具体方法和设备。这些方法和建议可以轻松扩展以用于其他类型的声纳浮标。经过修改的声纳浮标可以从远程无人站点连续传输长达 30 天,范围为 20 公里。将提供来自 APLIS 87 冰站的样本声学数据。
摘要。本文探讨了 IEEE 33 总线测试系统中电池储能系统 (BESS) 的优化分配,以提高整个系统的性能。使用 ETap 仿真软件进行全面分析,以确定 BESS 部署的战略位置。该研究旨在提高系统可靠性、减少传输损耗并增强各种运行条件下的电压曲线。ETap 平台有助于对 BESS 集成进行详细的建模和仿真,同时考虑负载变化、可再生能源和网络限制等因素。结果证明了所提出的 BESS 分配策略在缓解电压波动、最大限度地减少功率损耗和优化 IEEE 33 总线测试系统的整体运行方面的有效性。这些研究结果为寻求利用 BESS 提高性能和电网弹性的电力系统规划人员和运营商提供了宝贵的见解。
摘要。太赫兹波的控制为下一代传感、成像和信息通信提供了深厚的平台。然而,所有传统的太赫兹元件和系统都存在体积庞大、对缺陷敏感和传输损耗大等问题。我们提出并通过实验证明了拓扑器件的片上集成和小型化,这可能解决太赫兹技术的许多现有缺陷。我们设计和制造了基于谷-霍尔光子结构的拓扑器件,可用于片上太赫兹系统的各种集成组件。我们用拓扑波导、多端口耦合器、波分和回音壁模式谐振器证明了谷锁定非对称能量流和模式转换。我们的设备基于拓扑膜超表面,这对于开发片上光子学具有重要意义,并为太赫兹技术带来了许多特性。
摘要 — 在本文中,我们介绍了一种 TM 偏振 C 波段的一维光子晶体条带波导 (1D-PCSW)。波导结构基于绝缘体上硅平台,使用标准 CMOS 技术即可轻松实现。通过 3D 有限元法 (FEM) 进行了数值研究。通过优化器件的几何参数,提高了透射率和偏振消光比 (PER)。因此,TM 偏振光可以在波导中传播,在整个 C 波段电信波长窗口内损耗约为 2 dB,而 TE 偏振光的传输损耗高达 >30 dB。因此,在整个 C 波段波长范围内可获得 ~28.5 dB 的 PER。所提出的器件的总长度约为 8.4 µm,包括两端的 1 µm 硅条带波导段。基于本文的研究,可以实现需要严格偏振滤波的多种光子器件。
在大规模传统能源生产中,人们使用包括化石燃料在内的传统方法。这反过来又会导致引起环境问题的温室气体排放(例如二氧化碳或 CO2),而且这些传统方法依赖于传统的配电系统,而这些配电系统承受着高传输损耗。本文重点介绍能源领域的一个新概念,即从传统的集中式系统向分散式系统转变。能源行业正在将可再生能源整合到能源系统中,以实现净零排放等可持续发展目标。这要求进行变革,将众多大型和小型能源供应商(如屋顶太阳能电池板、风电场和太阳能发电厂)团结在一起。虽然这是一项具有挑战性的任务,但由于信息和通信技术、数字化、工业 4.0 概念和物联网技术的最新发展,这种大规模的转变是可行的。虽然本研究不能被视为彻底或结论性的,但它提供了基于关键词文献计量分析的评论,并概述了当前的全球研究。简介:
量子对话(QD)使通信双方能够同时直接交换秘密信息。在传统的QD协议中,光子需要在量子信道中传输两轮。本文提出了一种基于超纠缠的一步式QD协议。借助非局域超纠缠辅助的贝尔态测量(BSM),光子仅需在量子信道中传输一次。证明了一步式QD协议在理论上是安全的,并在实际实验条件下对其秘密信息容量进行了数值模拟。与之前的QD协议相比,一步式QD协议可以有效简化实验操作,减少由于光子传输损耗造成的信息丢失。同时,非局域超纠缠辅助的BSM成功率高达100%,并且可采用线性光学元件实现。此外,结合超纠缠预示的放大和纯化,我们的协议有可能实现长距离一步式QD。
一旦将 ReEDS 解决方案转换为 PLEXOS 数据库,就可以模拟全年的电网每小时调度。对于 Cambium 数据库,我们将 PLEXOS 作为混合整数程序运行,并进行日前机组投入和调度(不进行任何实时调整以应对小时以下调度或预测误差)。对于每个模拟年份,发电机具有恒定的热率和最大发电机输出。发电机短期边际成本 (SRMC) 通常在全年保持不变,但天然气发电机除外,其 SRMC 会随着天然气价格的每月变化而变化。供需在母线层实现平衡,配电损耗在数据预处理和后处理中捕获,如第 5.7 节所述。BA 间传输表示为具有恒定损耗率的管道流,没有 BA 内传输损耗。发电机停运表示为根据因技术而异的年平均停运率将安装容量降级为有效容量。三种运行储备表示为调节、灵活性和旋转储备,如第 5.10 节所述。
这主要是由于在“连接和管理”政策下,海上和苏格兰的风电快速部署、分布式发电和新互连(以新方式运行)的增长,以及输电容量建设的意外延迟。尽管因地点而异的网络费用和传输损耗因素提供了重要的位置投资信号(尽管对发电的影响大于需求),但其他因素(包括资源可用性和规划系统施加的限制)导致(主要是)风电在拥堵地区持续建设,预计未来几年拥堵情况会恶化,而输电建设还来不及跟上。TNUoS 收费的波动性和不可预测性(市场参与者无法对冲)也可能限制其作为位置投资信号的有效性。基于产出的可再生能源支持支付和固定接入权的结合进一步加剧了拥堵及其财务影响。互连器流量可能会加剧传输限制,并且可能会显著改变位置或接近实时地转向。预计未来几年互连在为 GB 系统提供灵活性方面的作用将会越来越大。