量子信息的两个基本禁忌定理是不可克隆定理(即不可能复制一般量子态)和不可传送定理(即禁止在没有预先共享纠缠的情况下通过传统信道传送或发送量子态)。已知它们是等价的,即量子态集合只有在可克隆时才是可传送的。我们的主要结果表明,当考虑计算效率时情况并非如此。我们给出了一个量子态和量子预言的集合,相对于这些量子态,这些量子态可以有效克隆,但不能有效传送。鉴于相反的情况是不可能的(可以传送的状态总是可以轻易克隆),这给出了这两个重要的禁忌性质之间最完整的量子预言分离。我们还研究了复杂性类 clonableQMA ,它是 QMA 的一个子集,其见证者可以有效克隆。作为我们的主要结果,我们给出了 clonableQMA 和 QCMA 类之间的量子预言分离,其见证仅限于经典字符串。我们还提出了一个候选无预言承诺问题来分离这些类别。我们最后展示了可克隆但不可电报状态在密码学中的应用,展示了如何使用此类状态来防止密钥泄露。
对线性代数,复数理论,概率理论,傅立叶变换,近极空间,量子力学,极化和光子概念的假设,量子测量,量子干涉法,量子密码学的基础知识,BB84协议,量子的基础原理,量子的基础,量子算子,量子不确定,量子不确定性,量子不确定,量子,EPR ker nocter,Epr spare,量子计算,量子通信和量子传送的基础知识,量子中继器,谐波振荡器的量化,量子隧道,统一操作员,投影操作员,量子电路,量子编程。对线性代数,复数理论,概率理论,傅立叶变换,近极空间,量子力学,极化和光子概念的假设,量子测量,量子干涉法,量子密码学的基础知识,BB84协议,量子的基础原理,量子的基础,量子算子,量子不确定,量子不确定性,量子不确定,量子,EPR ker nocter,Epr spare,量子计算,量子通信和量子传送的基础知识,量子中继器,谐波振荡器的量化,量子隧道,统一操作员,投影操作员,量子电路,量子编程。
我们的框架提供了一种方法,可以独特地确定任意经典和量子循环因果模型的概率分布,从而推广了先前已知的量子循环因果模型的方法[4,9]。它将量子周期性因果模型连接到具有截面后的量子循环因果模型,从而可以直接从无环的情况下直接将其通过此通信产生循环。它是从操作和选择后的组成方面进行的,并具有以更独立的方式概括的范围来概括后运算理论(即对具有后选择传送的分析的任何物理理论)。
摘要 - 分布式量子计算(DQC)是一种新的范式,旨在通过较小的量子处理单元(QPU)的互连来扩展量子计算。共享的纠缠允许QPU之间的两个状态和门传送。这导致了量子处理能力的有吸引力的水平缩放,这是以纠缠共享协议引入的额外时间和噪声为代价的。因此,跨多个QPU划分量子电路的方法应旨在最大程度地减少分布式QPU之间所需的基于纠缠的通信量。现有协议倾向于主要集中于优化门传送或状态传送的纠缠成本,以涵盖QPU之间的操作,而不是同时涵盖QPU之间的操作。问题的最一般形式应在同一基础上处理门和状态传送,从而使两者组合的成本电路分区最小。这项工作介绍了基于图的公式,该公式允许对门和状态传送成本进行联合优化,包括栅极传送的扩展,将大门分组在一起,用于使用共同资源分配。该配方允许各种电路类型的较低的电子位成本。使用基本的遗传算法,根据平均E-BIT成本和时间缩放,获得了最先进方法的性能。索引术语 - 量词计算,分布式量子计算,优化,量子网络,量子通信
我们现在面临的挑战之一就是理解卫星定期传送的这些 PB 级数据,并将它们与地球上收集的其他数据(例如通过地面基础设施、连接传感器或互联网和社交媒体上的开放数据)联系起来。因此,这里的重点实际上是从这些大数据中提取相关的“信息”和“情报”。用肉眼观察不再是一种选择。数据太多,类型也太多。仅哨兵卫星每天就传送了 TB 级的数据,而人类操作员需要几百年才能查看卫星传来的数据,所以我们需要机器来完成这项工作。这就是人工智能发挥作用的地方。它是一种非常强大的工具,提供了一种新的、自动化的、可扩展的方式来完成这项工作。人工智能和地球观测卫星真的是天作之合。
在此传送的是迈阿密戴德航空部(航空部或 MDAD)与 TY Lin International, Inc. 合作进行的一项可行性研究的结果,该研究分析了通过铁路燃料终端 (FBRT) 向迈阿密国际机场 (MIA) 运送航空燃料的可行性。该研究是根据 2024 年 4 月 2 日县委员会 (Board) 会议上发布的指令启动的,在此期间,委员会成员批准了第 285-24 号决议,要求县长与佛罗里达东海岸工业公司 (FECI) 讨论通过铁路运输燃料的概念;评估 FBRT 概念的收益和成本;考虑此类燃料运输服务的当前市场条件;列出 FBRT 的潜在地点以及这些地点的可能替代用途;就是否应继续开发 FBRT 提出建议;并向委员会提交一份未经委员会审查的报告,总结可行性研究的结果。
量子随机访问存储器(QRAM)被认为是必不可少的计算单元,可以在量子信息处理中实现多名速度。建议的实现包括使用中性原子和超导电路来构建二进制树,但这些系统仍然需要证明基本组件。在这里,我们提出了一个与固态记忆集成的光子集成电路(PIC)结构,作为构造QRAM的可行平台。我们还提出了一种基于量子传送的替代方案,并将其扩展到量子网络的背景。这两个实现都意识到了两个关键的QRAM操作,(1)量子状态传输和(2)量子路由,并具有已证明的组件:电气调节器,一个Mach-Zehnder干涉仪(MZI)网络,以及与人工原子相连的基于自旋记忆的记忆和固定的纳米腔。我们的方法从基于光子先驱的内置误差检测中获得了好处。详细介绍了QRAM的效率和查询效果的理论分析表明,我们的建议为一般QRAM提供了可行的近期设计。
本文通过引入Hetarch(用于设计异质量子系统的工具箱)来实现异质FTQC设计的挑战,并使用它来探索异性设计方案。使用分层方法,我们可以将量子算法分解为较小的操作(类似于经典应用程序内核),从而大大简化了设计空间和所得的权衡。专门针对超导系统,我们设计了由多种超导设备组成的优化异质硬件,将物理约束抽象成设计规则,使设备能够将设备组装到针对特定操作的标准单元中。最后,我们提供了一个异质的设计空间探索框架,该框架将模拟负担减少了10个或更多倍,并使我们能够将最佳的设计点提高。我们使用这些技术来设计用于纠缠蒸馏,误差校正和代码传送的超导量子模块,将错误率降低2。6×,10。7×和3。0×与均质系统相比。
量子随机访问存储器(QRAM)被认为是必不可少的计算单元,可以在量子信息处理中实现多名速度。建议的实现包括使用中性原子和超导电路来构建二进制树,但这些系统仍然需要证明基本组件。在这里,我们提出了一个与固态记忆集成的光子集成电路(PIC)结构,作为构造QRAM的可行平台。我们还提出了一种基于量子传送的替代方案,并将其扩展到量子网络的背景。这两个实现都意识到了两个关键的QRAM操作,(1)量子状态传输和(2)量子路由,并具有已证明的组件:电气调节器,一个Mach-Zehnder干涉仪(MZI)网络,以及与人工原子相连的基于自旋记忆的记忆和固定的纳米腔。我们的方法从基于光子先驱的内置误差检测中获得了好处。详细介绍了QRAM的效率和查询效果的理论分析表明,我们的建议为一般QRAM提供了可行的近期设计。