摘要 - 本文介绍了一项有关使用深度学习技术的手写签名验证的全面研究。本研究旨在应对离线签名验证的挑战,在此任务是自动区分真正的签名与伪造的挑战。所提出的方法利用了最新的深度学习模型,包括Mobilenet,Resnet50,InceptionV3和VGG19与Yolov5结合使用,以实现高精度分类和可靠的伪造检测。在多个基准数据集上评估了该系统,包括Kaggle签名,Cedar,ICDAR和SIGCOMP,在各种现实世界中展示了其有效性和鲁棒性。所提出的方法包括数据预处理技术,以增强输入手写签名图像的质量,从而使模型能够捕获基本功能和模式以进行准确的分类。结果表明,与现有的最新方法相比,提出的方法的优越性在识别真正的特征并准确检测伪造方面达到了出色的准确率(89.8%)。此外,该模型对变化数据集大小和配置的适应性进一步支持其在签名验证任务中实际部署的潜力。这项研究有助于脱机签名验证技术的发展,为确保各种应用程序中手写签名的安全性和真实性提供了可靠,有效的解决方案。