诺贝尔奖得主汉内斯·阿尔文于 1987 年在奥斯陆举办了第一届伯克兰讲座。该讲座由奥斯陆大学、挪威科学与文学学院和挪威公司 Norsk Hydro 联合举办。2004 年,Yara ASA 取代了 Norsk Hydro,自 2005 年以来,挪威航天中心一直是此次合作的合作伙伴。伯克兰讲座首先是为了纪念伟大的挪威科学家和企业家克里斯蒂安·伯克兰。然而,它也让组织者有机会邀请地球物理和空间研究领域的许多杰出科学家来到奥斯陆,而这些领域正是克里斯蒂安·伯克兰本人研究的核心领域。除了 1993 年在东京举办讲座和 1998 年在东京挪威大使馆举办小型研讨会外,该讲座一直在挪威举办,大部分在奥斯陆的学院场地举办。1993 年,该讲座在“日本-挪威北极研究联合研讨会”上举行。1995 年,该讲座是挪威环境研究研讨会的一部分,2001 年,该讲座与挪威空间研究研讨会有关,重点是 Cluster 卫星计划。
经验研究科学家,元,元,2020年,兼职(兼职)研究科学总监和网站负责人,Facebook人工智能智能研究,Menlo Park,2018年和2019年EECS部主席,EECS,UC Berkeley,UC Berkeley,2016- 2017年,2016年至2017年访问研究科学家,Google,Google,2015-2016成员,2015-2016成员,2015-2016委员会,2015-2011113-220。工程学院,2010 - 2012年,自2009年1月以来,加州大学伯克利分校生物工程教授。主席,伯克利分校EECS部,2004 - 2006年。主席,计算机科学部,EECS,加州大学伯克利分校,2002- 2004年。科学主任,雅虎!研究伯克利研究,2007年1月至6月(访问)教授,EECS,UC Berkeley,自1996年7月起。EECS副教授,加州大学伯克利分校,1991年7月至6月1996年。EECS助理教授,加州大学伯克利分校,1986年1月至6月1991年。成员,伯克利分校的视觉科学与认知科学团体。
摘要:山上在水资源可用性中起着极大的作用,并且它们提供的水的数量和时机在很大程度上取决于温度。为此,我们提出了一个问题:大气模型捕捉山温度的程度如何?我们合成结果表明,高分辨率,与区域相关的气候模型产生的空气温度(T2M)测量比观察到的(一种“冷偏置”)更冷,尤其是在冬季雪覆盖的中纬度山脉中。我们在全球山脉的44项研究中发现了常见的冷偏见,包括单模型和多模型合奏。我们探讨了推动这些偏见的因素,并检查了T2M背后的物理机制,数据限制和观察性不确定性。我们的分析表明,偏见是真实的,不是由于观察到的稀疏性或分辨率不匹配。冷偏置主要发生在山峰和山脊上,而山谷通常是温暖的偏见。我们的文献综述表明,增加模型分辨率并不能清楚地减轻偏见。通过分析科罗拉多洛矶山脉中的地表大气中的数据集成现场实验室(SAIL)现场活动,我们测试了与冷偏见有关的各种假设,发现当地的风回流,长波(LW)辐射和地表层参数有助于在此特定位置的T2M偏见。我们通过强调在仪器高的山区位置的协调模型评估和开发工作的价值来解决,以解决T2M偏见的根本原因,并提高对山气候的预测性理解。
本文件是作为美国政府资助工作的记录而编写的。尽管我们认为本文件包含正确的信息,但美国政府及其任何机构、加利福尼亚大学董事会及其任何员工均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构或加利福尼亚大学董事会对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构或加利福尼亚大学董事会的观点和意见。
与加州大学伯克利分校的努力类似,加利福尼亚州一直在实施各种应对气候变化的举措和政策。该州制定了雄心勃勃的减排目标,旨在到 2030 年将排放量减少到 1990 年水平的 40% 以下,到 2045 年实现碳中和。作为这些努力的一部分,加州实施了一项由加州空气资源委员会管理的限额与交易计划,建立了一种以市场为基础的方法,对碳排放进行定价,以激励主要行业减少温室气体排放,包括加州大学伯克利分校等热电联产厂的排放。加州限额与交易计划的成本预计将随着时间的推移而增加,如果热电联产厂继续运营,将给加州大学伯克利分校带来财务和声誉风险。据估计,2025 年至 2050 年间,加州大学伯克利分校可能在限额与交易碳排放成本上花费 2.5 亿美元。
与加州大学伯克利分校的努力类似,加利福尼亚州一直在实施各种应对气候变化的举措和政策。该州制定了雄心勃勃的减排目标,旨在到 2030 年将排放量减少到 1990 年水平的 40% 以下,到 2045 年实现碳中和。作为这些努力的一部分,加州实施了一项由加州空气资源委员会管理的限额与交易计划,建立了一种以市场为基础的方法,对碳排放进行定价,以激励主要行业减少温室气体排放,包括加州大学伯克利分校等热电联产厂的排放。加州限额与交易计划的成本预计将随着时间的推移而增加,如果热电联产厂继续运营,将给加州大学伯克利分校带来财务和声誉风险。据估计,2025 年至 2050 年间,加州大学伯克利分校可能在限额与交易碳排放成本上花费 2.5 亿美元。
缩写:%,百分比; 4E-BP1,真核翻译起始因子4E结合蛋白; Akt,蛋白激酶B; B-CHP,胶原蛋白杂交肽; CD31,分化簇31; CER,神经酰胺;蛤,哥伦布仪器综合实验室动物监测系统; CM,文化媒体; Col-IV,胶原蛋白IV; CSA,横截面区域; dag,二甘油二酸酯; DAPI,4',6-Diamidino-2-苯基吲哚; ERK1/2,细胞外信号调节的激酶1/2; E-WAT,附子脂肪垫; FBXO32,F-box蛋白32; foxo3a,叉子盒O3; GTT,葡萄糖耐量测试; H,小时; H&E,苏木精和曙红; HOMA-IR,胰岛素抵抗的稳态模型评估; HSL,激素敏感脂肪酶;如果,免疫荧光; IL-6,白介素6; i-wat,腹股沟脂肪垫;最小,分钟; MTOR,雷帕霉素的机械靶标; Musa1,F-box蛋白30; MyHC,肌球蛋白重链; NMR,核磁共振; OCT,最佳切割温度化合物; p/t,磷酸化; PAX7,配对盒蛋白PAX-7; PGC-1α,过氧化物酶体增殖物激活的受体 - 伽马共振剂1α; QPCR,实时聚合酶链反应; RER,呼吸道交换比; RNA,核糖酸; RPS6K,核糖体结合蛋白S6激酶B1;标签,甘油三酸酯; TRAF6,肿瘤坏死因子受体相关因子6; USP,美国药品; VCO 2,二氧化碳生产; VO 2,消耗氧。
*通信:美国加利福尼亚州加利福尼亚州加利福尼亚州加利福尼亚州加利福尼亚州加利福尼亚州9500年,加利福尼亚州加利福尼亚州92093,吉尔曼DR。mlhill8@asu.edu(M.L.山)。信用撰稿人贡献声明摩根 - 洛佩兹·安东尼奥(Morgan-LópezAntonio A。):概念化,数据策划,正式分析,资金获取,方法,资源,资源,监督,写作 - 审查和编辑。Hill Melanie:概念化,正式分析,调查,方法论,写作 - 原始草稿,写作 - 评论和编辑。支持Sudie E。:概念化,方法论,资源,写作 - 评论和编辑。Norman Sonya B。:概念化,方法论,资源,监督,写作 - 评论和编辑。hien denise a。:概念化,资金获取,方法论,资源,监督,写作 - 评论和编辑。Saavedra Lissette M。:概念化,数据策划,方法论,写作 - 评论和编辑。Saraiya Tanya C。:方法论,写作 - 原始草稿,写作 - 评论和编辑。Kline Alexander C。:概念化,方法论,写作 - 原始草稿,写作 - 评论和编辑。 Ruglass Lesia M。:概念化,方法论,监督,写作 - 评论和编辑。 Gette Jordan:方法,写作 - 原始草稿,写作 - 评论和编辑。Kline Alexander C。:概念化,方法论,写作 - 原始草稿,写作 - 评论和编辑。Ruglass Lesia M。:概念化,方法论,监督,写作 - 评论和编辑。Gette Jordan:方法,写作 - 原始草稿,写作 - 评论和编辑。
合成生物学的进步促进了将异源代谢途径掺入各种细菌底盘中,从而导致靶向生物产品的合成。然而,异源生产途径的总产量可能会遭受低浮标,酶滥交,有毒中间体的形成或对竞争反应的中间损失,这最终阻碍了其全部潜力。基于蛋白质的细菌微校区(BMC)的自组装,易于修饰的,提供了一种复杂的方法来克服这些障碍,通过充当与细胞的调节性和代谢网络解耦的自主催化模块。More than a decade of fun- damental research on various types of BMCs, particularly structural studies of shells and their self-assembly, the recruitment of enzymes to BMC shell scaffolds, and the involve- ment of ancillary proteins such as transporters, regulators, and activating enzymes in the integration of BMCs into the cell's metabolism, has signi fi cantly moved the fi eld 向前。这些进步使生物工程师能够设计合成的多酶BMC,以促进乙醇或氢的产生,增加细胞多磷酸盐水平,并将甘油转化为丙二醇或甲酸盐或丙酮酸。这些开创性的努力揭示了合成BMC的巨大潜力,以封装非本性多酶生化途径以合成高价值产品。
