DNA topoisomerase I acts as supercoiling sensor for transcription elongation in E. coli Authors: Vita Vidmar 1,2,3,4,# , Céline Borde 5,# , Lisa Bruno 5 , Maria Takacs 1,2,3,4 , Claire Batisse 1,2,3,4 , Charlotte Saint-André 1,2,3,4 , Chengjin Zhu 1,2,3,4,OlivierEspéli5,ValérieLamour1,2,3,4,*和Albert Weixlbaumer 1,2,3,4,*摘要:当DNA转录为RNA时,DNA Double Helix会不断解开,并为RNA Polymerase(RNAP)提供访问权限(RNAP)。由于RNAP的下游和上游的DNA过度和扭转,这将诱导DNA超螺旋作为转录长度的函数。使用单粒子冷冻EM和体内测定法,我们研究了细菌RNAP和DNA拓扑异构酶I(topoi)之间的关系,该酶消除了RNAP上游积累的负超高。topoi与RNAP的放松DNA上游结合,表明具有感官作用,等待负超级锅的形成,并涉及托皮伊(Topoi)功能域中的构象转换。在DNA底物上模仿了否定超螺旋的DNA,topoi螺纹将一条线束进入活跃位点进行裂解,同时将互补链与辅助结构域结合。,我们在转录RNAP的背景下提出了一个用于DNA松弛的综合模型。1综合结构生物学系,Institut degénétiqueet de BiologieMoléculaireet Cellulaire(IGBMC)2UniversitédeStrasbourg
有效的废物管理对于向更可持续的社会过渡是必要的。新兴趋势是使用混合培养生物技术从有机废物中产生化学物质。对社区成员及其成长表征之间代谢相互作用的见解是需要介导知识驱动的生物程序发展和优化的。 在这里,建立了一种通过糖基链伸长代谢生产的颗粒状污泥生物处理。 乳酸和链条细菌被鉴定为颗粒状社区中的两个主要功能行为。 主要社区代表的生长特征(用于乳酸菌细菌分离的limosilactobacilus musocae g03和型菌株ca磷酸蛋白酶乳糖剂的乳酸元素用于链式延长细菌)。 测得的乳酸菌细菌的生长速率(0.051±0.005 h-1)比链链细菌的生长速率高两倍(0.026±0.004 h-1),而乳酸细菌的生物量产率,而乳酸的生物量比0.120±0.005 g biomass/g gluces shite sabenia(0.20 lips)the twy-t lips lips lise(0.2) 0.007 G生物量/G葡萄糖)。 这表明了不同的生长策略,乳酸细菌类似于R-Strategist和链链细菌,类似于K-Strategist的细菌。 此外,确定粘膜葡萄糖的半饱和常数确定为0.35±0.05 g/l的葡萄糖。 对摘要酸的高耐药性使乳酸细菌能够持续并在用于生产映酸的系统中壮成长。对社区成员及其成长表征之间代谢相互作用的见解是需要介导知识驱动的生物程序发展和优化的。在这里,建立了一种通过糖基链伸长代谢生产的颗粒状污泥生物处理。乳酸和链条细菌被鉴定为颗粒状社区中的两个主要功能行为。主要社区代表的生长特征(用于乳酸菌细菌分离的limosilactobacilus musocae g03和型菌株ca磷酸蛋白酶乳糖剂的乳酸元素用于链式延长细菌)。测得的乳酸菌细菌的生长速率(0.051±0.005 h-1)比链链细菌的生长速率高两倍(0.026±0.004 h-1),而乳酸细菌的生物量产率,而乳酸的生物量比0.120±0.005 g biomass/g gluces shite sabenia(0.20 lips)the twy-t lips lips lise(0.2) 0.007 G生物量/G葡萄糖)。这表明了不同的生长策略,乳酸细菌类似于R-Strategist和链链细菌,类似于K-Strategist的细菌。此外,确定粘膜葡萄糖的半饱和常数确定为0.35±0.05 g/l的葡萄糖。对摘要酸的高耐药性使乳酸细菌能够持续并在用于生产映酸的系统中壮成长。观察到映二酸对粘膜乳杆菌生长的线性趋势,并且预计生长抑制性映酸浓度为13.6±0.5 g/L,这是迄今为止报告的最高的。将粘液乳杆菌的预先调节至4 g/L的摘要酸没有提高对其的总体耐药性,而是在低磷酸浓度(1-4 g/L)的情况下恢复了生长速率(即,在0 g/l的磷酸酸的生长速率)。在这里,提供了对两个基于糖的链伸长系统的两个主要功能协会的增长的见解,从而可以更好地理解它们的相互作用并促进未来的生物处理设计和优化。
1美国加利福尼亚州加利福尼亚大学圣地亚哥大学医学院神经科学系,美国92093,美国2 Neurowaging Group(Neural),临床神经科学研究实验室(LINCS),Santiago de Compostela(IDIS)健康研究所(IDIS),15706,SPIANIA,SPAIRAIS,SPAIRIAS,SPAIRIA,SPAIRIA,SPAINIA,SPAIRIA,SPAINIA,SPAINIA,SPAIRARES,NEURAST 3NEURAST NEURAS,NEURAS,NEURAS,NEURAS美国迭戈,加利福尼亚州拉霍亚,92093,美国4神经科学系,加利福尼亚州加利福尼亚大学圣地亚哥分校,加利福尼亚州拉霍亚大学,美国92093,美国5 VA San Diego研究服务,加利福尼亚州圣地亚哥,92161,美国,美国92161,美国,尽管蛋白质合成中的蛋白质合成中的角色均具有轴突的影响,该蛋白质是轴突的作用(CN),是轴突的维修(CN)。尚未检查合成机械。值得注意的是,某些伸长因子具有非规范功能,可能会进一步影响轴突修复。在这里,我们检查了过表达的真核伸长因子1 alpha(EEF1A)蛋白是否在单侧锥虫切开术后增强了皮质脊髓束(CST)神经元的附带发芽,以及下面的分子机制。我们发现CST神经元中的EEF1A蛋白过表达的PS6水平是神经元体内MTOR活性但不是PSTAT3和PAKT水平的指标。引人注目的是,单独表达EEF1A2,但同时又不单独使用EEF1A1或两个因素,都会增加CST神经元中蛋白质的合成和肌动蛋白重排。虽然eef1a1过表达仅在锥虫切开术后仅略微增强CST发芽,但EEF1A2的过表达显着增强了这种发芽。令人惊讶的是,EEF1A1和EEF1A2的共表达导致了类似于野生型对照的发芽表型,这表明过表达这两种蛋白质的拮抗作用。这些数据提供了第一个证据表明,过表达翻译机械的核心成分EEF1A2,增强了CST发芽,这可能是由于蛋白质合成,MTOR信号传导和肌动蛋白细胞骨架重排的结合而可能是通过增加的。