摘要目的 — 本文旨在提出一种新的简化数值模型,该模型基于一个非常紧凑的半经验公式,能够模拟电液伺服阀的流体动力学行为,同时考虑由于阀门几何形状(例如阀芯和套筒之间的流动泄漏)和操作条件(例如可变供应压力或水击)引起的多种影响。 设计/方法/方法 — 所提出的模型通过简化表示来模拟阀门性能,该表示源自基于压力和流量增益的线性化方法,但能够评估边界条件、压力饱和和泄漏评估之间的相互作用。 与其他流体动力学数值模型(详细的基于物理的高精度模型和文献中其他简化模型)相比,对其性能进行了评估。发现 – 尽管由于其简化的公式,所提出的模型仍然存在一些局限性,但它克服了文献中最常见的流体动力学模型的几个典型缺陷,描述了水击和输送压差与阀芯位移的非线性依赖关系。原创性/价值 – 尽管仍然基于简化的公式,降低了计算成本,但所提出的模型引入了一种新的非线性方法,该方法以适当的精度近似压力-流量流体动力学特性
简介 SPEEDTRONIC ™ Mark V 燃气轮机控制系统是大获成功的 SPEEDTRONIC ™ 系列中的最新衍生产品。先前的系统基于可追溯至 20 世纪 40 年代末的自动涡轮控制、保护和排序技术,并随着现有技术的发展而成长和发展。电子涡轮控制、保护和排序的实施起源于 1968 年的 Mark I 系统。Mark V 系统是涡轮自动化技术的数字化实施,该技术是在 40 多年的成功经验中学习和改进的,其中 80% 以上是通过使用电子控制技术实现的。SPEEDTRONIC ™ Mark V 燃气轮机控制系统采用当前最先进的技术,包括三重冗余 16 位微处理器控制器、关键控制和保护参数的三选二表决冗余以及软件实现的容错 (SIFT)。关键控制和保护传感器是三重冗余的,并由所有三个控制处理器进行表决。系统输出信号在关键螺线管的触点级、其余触点输出的逻辑级和模拟控制信号的三个线圈伺服阀上进行表决,从而最大限度地提高保护和运行可靠性。独立的保护模块提供三重冗余硬连线检测和超速停机以及检测火焰。该模块还将涡轮发电机与电力系统同步。三个控制处理器中的检查功能支持同步。Mark V 控制系统旨在满足所有燃气轮机控制要求。这些包括根据速度要求控制液体、气体或两种燃料、部分负荷条件下的负荷控制、最大容量条件下或启动条件下的温度控制。此外,入口导叶和水或蒸汽喷射也受到控制以满足排放和操作要求。如果排放控制使用