I. 引言 A. 背景与动机 近年来,空中操控引起了机器人研究界的极大兴趣 [1]。多个研究小组展示了使用安装在空中机械手上的夹持器进行空中抓取 [2]–[4]。Lee 和 Kim、Kim 等人展示了协作式空中机械手在有障碍物的环境中抓取未知有效载荷 [5],[6]。Orsag 等人演示了使用四旋翼平台和安装在平台上的双臂执行拾取和钉孔任务 [7]。欧盟第七框架计划资助了几个空中机械手项目,研究空中机械手与环境交互时的运动规划和阻抗控制 [8]–[10]。德国航空航天中心的一个研究小组介绍了安装在直升机上的 7 自由度人形手臂的潜在应用 [11]。类似 Delta 的机构 [12] 和并联机械手 [13] 也被考虑用于空中机械手。这些现有的研究为空中操纵的研究提供了广阔的未来。然而,与地面操纵器相比,空中操纵器能够完成的任务仍处于非常初级的阶段。这是由于许多因素造成的,例如
摘要:本文提出了一种新型的分散式两层多传感器融合架构,用于建立一种新型的弹性姿态估计方案。正如将要介绍的那样,融合架构的第一层考虑一组分布式节点。来自不同传感器的所有可能的姿态信息组合被整合在一起,以获得通过涉及多个扩展卡尔曼滤波器获得的各种估计姿态可能性。基于从第一层获得的估计姿态,在第二层引入了故障弹性最佳信息融合 (FR-OIF) 范式以提供可信的姿态估计。第二层将每个节点(在第一层构建)的输出合并为加权线性组合形式,同时明确考虑最大似然融合标准。此外,在测量不准确的情况下,所提出的 FR-OIF 公式通过嵌入内置故障隔离机制实现了自我弹性。此外,FR-OIF 方案还能够在传感器故障或错误测量的情况下解决精确定位问题。为了证明所提出的融合架构的有效性,已经对微型飞行器进行了广泛的实验研究,该飞行器配备了各种机载姿态传感器,例如 3D 激光雷达、实感摄像头、超宽带节点和 IMU。所提出的新框架的效率是可扩展的