信用撰稿人贡献声明Jared Keith Averitt:写作 - 原始草案,评论,可视化,验证,资源,方法,软件,调查,资金获取,正式分析,数据策划,概念化,概念化。sajedeh pourianejad:写作 - 原始草稿,验证,方法论,调查,正式分析,数据策划。Olubunmi O. Ayodele:方法论,概念化。柯比·施密特(Kirby Schmidt):调查,数据策划。Anthony Trofe:数据策划。Joseph Starobin:写作 - 评论和编辑,监督,资源,资金获取。 Tetyana Ignatova:写作 - 审查和编辑,监督,资源,资金获取,概念化。 致谢J.K.A. 承认,该材料基于国家科学基金会(NSF)研究生研究奖学金的工作, [1945980]和这项工作在匹兹堡超级计算中心使用了桥梁-2通过分配[PHY220034],来自高级网络网络基础结构协调生态系统:服务与支持(访问)计划,由国家科学基金会#2138259,#2138259,#2138286,21386,#2133330,及#21333303.60,由国家科学基金会支持 T.I,J.K.A.,A.T。承认纳米技术的创新合作实验室赋予未来士兵的权力(ICONS),美国国防部[合同#W911QY2220006]与纳米科学和纳米工程联合学校之间的共同计划。 图1。Joseph Starobin:写作 - 评论和编辑,监督,资源,资金获取。Tetyana Ignatova:写作 - 审查和编辑,监督,资源,资金获取,概念化。致谢J.K.A.承认,该材料基于国家科学基金会(NSF)研究生研究奖学金的工作,[1945980]和这项工作在匹兹堡超级计算中心使用了桥梁-2通过分配[PHY220034],来自高级网络网络基础结构协调生态系统:服务与支持(访问)计划,由国家科学基金会#2138259,#2138259,#2138286,21386,#2133330,及#21333303.60,由国家科学基金会支持T.I,J.K.A.,A.T。承认纳米技术的创新合作实验室赋予未来士兵的权力(ICONS),美国国防部[合同#W911QY2220006]与纳米科学和纳米工程联合学校之间的共同计划。 图1。T.I,J.K.A.,A.T。承认纳米技术的创新合作实验室赋予未来士兵的权力(ICONS),美国国防部[合同#W911QY2220006]与纳米科学和纳米工程联合学校之间的共同计划。图1。这项工作是在纳米科学和纳米工程联合学校进行的,东南纳米技术基础设施走廊(SENIC)和国家纳米技术协调基础设施(NNCI)的成员,该基础设施(NNCI)得到了国家科学基金会[ECCS-1542174]的支持。J.K.A.,A.T。承认宾夕法尼亚州立大学二维水晶财团 - 材料创新平台(2DCC-MIP),该平台得到了NSF合作协议DMR-203935的支持。 使用NNP:神经网络潜力(机器学习的同义原子间潜在的同义)EDA-FF:能量分解分析 - 使用经典力场(结构优化后)GDAC:依赖性原子电荷BFGS:BROYDEN – FLOYDEN – FLOYDER-GLETCHER – FLETCHER-GOLDCHER-GOLDFARB – SHANNO ATSIS ATSIS ENTICAL DYMANSSSSSSSSSSS, (包含位置,质量,能量和力)DFT:密度功能理论(基于量子力学的电子结构计算方法)PMMA:聚甲基甲基丙烯酸酯(用于石墨烯转移的常用聚合物)ALP:Angelica Lactone Polymer(用于添加剂的生物量聚合物)。 (a)初始化AEV,(B)迭代NNP/MD优化几何(X,Y,Z),直到能量收敛为0.05 MeV,(C)计算表面接触的原子电荷(Q)和VDW面积。J.K.A.,A.T。承认宾夕法尼亚州立大学二维水晶财团 - 材料创新平台(2DCC-MIP),该平台得到了NSF合作协议DMR-203935的支持。使用NNP:神经网络潜力(机器学习的同义原子间潜在的同义)EDA-FF:能量分解分析 - 使用经典力场(结构优化后)GDAC:依赖性原子电荷BFGS:BROYDEN – FLOYDEN – FLOYDER-GLETCHER – FLETCHER-GOLDCHER-GOLDFARB – SHANNO ATSIS ATSIS ENTICAL DYMANSSSSSSSSSSS, (包含位置,质量,能量和力)DFT:密度功能理论(基于量子力学的电子结构计算方法)PMMA:聚甲基甲基丙烯酸酯(用于石墨烯转移的常用聚合物)ALP:Angelica Lactone Polymer(用于添加剂的生物量聚合物)。(a)初始化AEV,(B)迭代NNP/MD优化几何(X,Y,Z),直到能量收敛为0.05 MeV,(C)计算表面接触的原子电荷(Q)和VDW面积。
现实世界中的行为会产生直接的感官后果。在数字环境中模仿这些后果是可以实现的,但技术限制通常会在用户操作和系统响应之间施加一定的延迟。评估这种延迟对用户的影响非常重要,最好使用不会干扰其数字体验的测量技术。一种这样的不引人注目的技术是脑电图 (EEG),它可以通过从连续的 EEG 记录中提取事件相关电位 (ERP) 来捕捉与运动反应和感官事件相关的用户大脑活动。在这里,我们利用了这样一个事实:感官 ERP 成分(特别是 N1 和 P2)的幅度反映了感官事件被视为自身行为的预期结果的程度(自我生成效应)。参与者(N = 24)通过在虚拟键盘上输入代码来打开门,在虚拟现实 (VR) 环境中引发听觉事件。在参与者内部设计中,用户输入和声音呈现之间的延迟是跨块操纵的。有时,虚拟键盘会由模拟机器人操作,从而产生外部生成声音的控制条件。结果表明,相对于外部生成的声音,自生成声音的 N1(但不是 P2)振幅会降低,而 P2(但不是 N1)振幅会通过声音呈现的延迟以分级方式进行调制。N1 和 P2 效应之间的这种分离可以追溯到对自生成声音的基础研究。我们建议将 P2 振幅作为候选读数,以评估数字环境在系统延迟方面的质量和沉浸感。
孟加拉国需要平均粗大的水稻产量为9.11 t ha -1到2050年,在所有地理区域中都无法平等地实现,因为该国具有各种“水稻类型”,其产量有不同。本文着重于通过精炼水稻类型来达到产量目标的战略创新。基于水稻生态系统和紧迫需求,我们将孟加拉国的水稻地区分为17种不同的类型。我们估计每种水稻类型的逐年土地区域和可实现的收益率目标。最后,我们比较了到2020年,孟加拉国的目标产量和最高水稻品种的产量,以了解我们品种改善计划的当前状态。我们弄清了每种水稻类型需要多少改进。在大米类型中,冷耐(北部和西部)被整理为水稻产量的最潜在领域,在该地区将释放大米品种的产量优势为4.04 t ha -1到2050年。The chronology of next priority areas for high yielding variety development and their target yield advantages in t ha -1 are saline Boro (4.03), Favourable Boro (long duration) (4), cold-tolerant (Haor) (3.83), tidal submergence (3.8), Healthier rice (Boro) (3.58), Favourable Boro (short duration) (3.33), Healthier rice (Aman)(3.3),有利的Aman(3.23),山洪(3.09),山地大米(2.89),盐水Aman(2.8),更健康的大米(AUS)(2.53)(2.53),优质米饭(2.53),干旱(2.38),T.AUS(2.05)和深水。结合了遗传干预措施,例如通过环状繁殖,基因组选择,标记辅助选择,基因组编辑,遗传转化,通过基因组范围的关联研究和现象学研究以及超级混合水稻的开发在该国使用不同类型的产量靶标。
摘要这项研究的目的是估算Kaptai国家公园中的树木生物多样性。在Rangamati Hill Tracts区的Rangamati South Forest Division的管辖下,Kaptai国家公园的总面积约为4,564公顷(11,273.08英亩)。该研究仅通过对Kaptai国家公园的树种组成进行广泛的调查进行。在调查过程中,从公园记录了29个家庭的65种树种。在植物家族中,薄膜科具有最多的物种(7),其次是Meliaceae(6),Ancardiaceae,Ancardiaceae(5),Moraceae,Moraceae(4),Verbenaceae(4),Combretaceae(4),Myrtaceae(4),Myrtaceae(4),Dipterocarocarpaceae,Fabaceae(3),2(3),Rubiace(3)(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),Rubiace(3),3) (2),凯撒尼亚科(2),dilleniaceae(2)和bignoniaceae(2)。有15个家庭包含单个物种。属于含有含羞草家族的树种在物种数量及其种群方面受到了主导。本研究的发现将在这个退化的森林生态系统以及Kaptai国家公园的保护,保护和可持续管理中贡献。
最近,许多国家广泛开展降低温室气体排放量持续增长的倡议,这不仅是因为严格的排放标准,还因为燃料价格上涨导致人们更多地利用可再生能源。谈到可用的不同形式的可再生能源,太阳能被认为是最佳选择,因为它在自然界中储量丰富。然而,在使用太阳能时,首先要克服一些障碍。例如,缺乏有效的技术导致太阳能成为一项昂贵的事业,并且在将太阳能转化为有用形式的能源的过程中存在一些问题。由于技术的最新发展,相变材料 (PCM) 的应用已成为一种储存太阳能的有吸引力的方法。在各种糖醇中,赤藓糖醇的潜热更高、热稳定性更高、无毒、价格低廉且易于获取。本文利用相变材料赤藓糖醇 (C 4 H 8 O 4 ) 来利用太阳能,并展示了一种将太阳能从利用地点传输到可以利用地点的新方法。还展示了在实验地点的直接太阳辐射高和低的五个不同日子里,太阳能利用率的变化。关键词:太阳辐射、相变材料 (PCM)、太阳能。关键词:相变材料、潜热、太阳能简介