感谢 Yabra Muvdi 提供的出色研究协助,他创建并估算了分类算法,并感谢 Miaomiao Zhang 和 Kelsey Shipman 为数据分析提供支持。Hansen 非常感谢 ERC Consolidator Grant 864863 的资金支持,感谢伦敦政治经济学院 STICERD 博士研究基金和英联邦奖学金委员会的 Lambert 的资金支持,感谢 Smith Richardson 和 John Templeton 基金会的 Bloom 的资金支持,感谢 Templeton 基金会和芝加哥大学布斯商学院的 Davis 的资金支持,感谢哈佛商学院的 Sadun 的资金支持。本文附带的精选可视化和数据可在 www.WFHmap.com 上找到。本文表达的观点为作者的观点,并不一定反映美国国家经济研究局的观点。
因此,跨个体、跨场景的脑电分析方法逐渐成为研究热点。越来越多的研究人员将广泛应用脑 电信号分析的特征于跨个体、跨场景的脑电信号分析研究中。 Touryan 等人采用经典的独立成分分 析的特征分析方法描述特征空间,计算功率谱密度( Power Spectral Density , PSD ),并采用顺序 前向浮动选择方法识别频谱特征中的独立成分集,结果表明该方法可以识别出跨场景脑电信号中的 共同成分 [88] 。 Kakkos 等人采用了特征融合的方法,将 PSD 与功能连接特征相结合,提高了跨场景 分类的性能,并证明了脑特征融合在跨场景中的应用更为有效 [89] 。 Xing 等人将模糊熵特征用于跨 场景脑电信号分析,发现模糊熵特征相对于其他特征更能适合跨场景 [90] 。卷积神经网络 ( Convolutional Neural Networks , CNN )和递归神经网络( Recurrent Neural Networks , RNN )等基 于深度学习的新型跨任务模型在跨场景脑电分析中展现了巨大潜力。这些模型能够自动提取特征和 学习复杂的脑电特征,从而有效地缩小不同任务和场景之间的差距,提高模型的泛化能力 [91][92][93] 。 近年来,一些跨学科的方法被创新性地应用于跨场景研究, Zhao 等人提出了一种跨学科的对齐多 源域自适应方法,用于跨个体的 EEG 疲劳状态评估,显著提高了模型的泛化能力 [94] , Zhou 等人在 此基础上进行改进,提出了一种跨任务域自适应方法,有效提升了跨场景认知诊断的性能 [95] 。
修读“项目报告”的学生须修读以下七门选修学科单元/科目,以获得21 学分;修读“实习及报告”的学生须修读以下八门选修学科单元/科目,以获得24 学分︰ 集成电路研究方法和应用选修45 3 数字集成电路选修45 3 数据转换器集成电路设计选修45 3 柔性交流输电系统选修45 3 电源管理集成电路设计选修45 3 生物医学工程专题选修45 3
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年1月16日发布。 https://doi.org/10.1101/2024.01.15.575646 doi:biorxiv Preprint
摘要:在过去十年中,我们一直使用双盲调查技术和随机抽样技术,收集了 20 个国家/地区 10,000 多个组织的管理数据。平均而言,我们发现,在制造业中,美国、日本和德国的公司管理得最好。巴西、中国和印度等发展中国家的公司往往管理不善。按照国际标准,美国的零售公司和医院也管理得很好,尽管美国的学校管理得比其他几个发达国家的学校差。我们还发现,每个国家和每个行业的组织在管理实践方面存在很大差异,这反映了这些行业绩效分布的异质性。与这种差异相关的一个因素是所有权。政府、家族和创始人拥有的公司通常管理不善,而跨国、分散股东和私募股权拥有的公司通常管理良好。产品市场竞争越激烈,工人技能越高,管理实践就越好。监管较少的劳动力市场与激励管理实践(如基于绩效的晋升)的改善有关。
46 电机与资讯学院College of Electrical Engineering and Computer Science UB02 电机工程系智慧自动化系统硕士在职专班硕士在职专班Graduate Program in Intelligent Automation Systems 工学硕士Master of Science
crispr-cas3:以与CRISPR-CAS9相同的方式切割双链DNA,但CRRNA(指南)识别顺序很长