BITS PILANI的生物科学系是由1969年合并现有植物学和动物学系的。生物科学系正在寻找明亮而敬业的年轻研究学者。该部正在追求由各种政府资助机构和行业赞助的研发项目。在过去的十年中,该部门在不同生物科学领域的校园中生产了100多个博士学位(校园和校外)。即将毕业的博士生在印度和国外的行业和学术界都找到了职位。现在的位置在该部门的不同研究推力区域开放。
事实证明,最大化能带简并度和最小化声子弛豫时间对于推进热电学是成功的。与单碲化物合金化已被公认为是收敛 PbTe 价带以改善电子性能的有效方法,同时材料的晶格热导率仍有进一步降低的空间。最近有研究表明,声子色散的加宽衡量了声子散射的强度,而晶格位错是通过晶格应变波动实现这种加宽的特别有效的来源。在本研究中,通过精细控制 MnTe 和 EuTe 合金化,由于涉及多个传输带,PbTe 价带边缘附近的电子态密度显著增加,而密集的晶内位错的产生导致声子色散有效加宽,从而缩短声子寿命,这是由于位错的应变波动较大,这已由同步加速器 X 射线衍射证实。电子和热改进的协同作用成功地使平均热电性能系数高于工作温度下 p 型 PbTe 的报道值。
İfĉāmicāë0ë0údk3m7m7mbgn <3Mbgn <3Mbgn <3Mbgn <3Mbgn <3mbgn = 〜3m = 〜3℺«c«c«c«c«c«c«c«c。 Åħ}。 ib¾hs² -2ij2 - #ijzë -ę[0平均ģ+。 u#nd $ 1avos_tvoīð²±ijzó¾hõ¾hõ«0la£out- O - *tr 2 tr 2 tr 2 tr 2! \äę[0úmñ«â€™tâzë -tâ\ \ääääääääääisúëúëúëâ#j#ândzá - *,Øsâo n o n o n onij ssvep \ä0č»ù¼ijċčmñmï-\ässvep \äOiijzë--\ä /¾hâtome -į 1/4ij½½的3¾hs。
Cancer Precision Medicine Co.,Ltd。是我们公司的合并子公司,目前正在Messek Co.,Ltd。
脱位密度。那些不同的方法不观察到相同类型的位错,即统计存储的位错(SSD)和/或几何必需的脱位(GND)。有些是直接测量技术,例如ECCI和TEM成像,而其他是非方向方法,即HR-EBSD和XRD测量。因此,提出了使用这四种技术在未变形和变形的双链钢上获得的测量值的定量比较。对于低变形,位错密度很小(成像方法相当性能,而XRD 1- 5×10 13 m - 2),测量值的不确定性水平高。HR-EBSD测量结果表明,结果与这些变形水平的其他方法非常吻合。对于较高的变形水平(上面的脱位密度),成像方法不再相关,因此1 - 3×10 14 m - 2
摘要:通过单个因子和正交测试获得了304L不锈钢的最佳SLM条件。结果表明,当激光输出功率为190 W时,最佳硬度(75 hrb)和相对密度(RD 99.24%)可以获得,扫描距离为0.09 mm,扫描速度为800 mm/s。鱼尺度的微观结构是均匀的,紧凑,最佳样品中有几个孔。细胞颗粒在熔融池的边缘附近随机分布,并形成了一些优选的颗粒柱晶体结构。在细胞结构之间观察到大量的纠缠位错,形成位错簇。球形纳米原子,富含Si,Mn和O。样品的机械性能是高度各向异性的,并且在拉伸裂缝处有明显的颈部和延展性。
晶界 (GB) 中的局部原子排列与边界晶粒中的局部原子排列不同,以便能够调节相应晶格的取向误差。[1–8] 从结构上讲,局部排列包括沿边界重复的位错核和结构单元。从化学上讲,位错核和其他结构单元并不总是化学计量的,甚至可能具有复杂性。[9] 总之,GB 和晶粒的化学和结构差异导致局部 GB 振动,这在许多领域都引起了人们的兴趣。例如,在热传输 [4–7,10] 和红外光学中,[4,8] 声子频率和寿命决定了材料响应的关键方面。此外,局部振动的变化可以显著改变功能材料的自由能景观 [11–13] 或增加熵对自由能的贡献并影响相变。[14–16]
FCI 液位产品采用 FCI 独有的恒功率、热分散传感技术,可产生高灵敏度和低功耗元件。FCI 液位传感器没有移动部件,不会堵塞或结垢,维护成本几乎可以消除。液位元件设计可用于通过储液器或变速箱的法兰或螺纹工艺连接,并配有电连接器或飞线到电子设备。FCI 还提供用于内部安装在储液器或油底壳内的液位元件,飞线电导线穿过容器壁的密封件并连接到远程安装的电子设备。多点液位传感元件设计可用于储液器中多达八 (8) 个独立高度。
• 以十进制单位显示 17。有多少组十进制?还剩下多少个 1?• 排列 10 个十进制单位,并显示相当于一根杆。• 排列一根十进制杆,并显示相当于 10 个单位。• 用十进制块表示 45。有多少组十进制?还剩下多少个 1?• 用手表示 45。闪现四捆 10(“10、20、30、40”)。为每个 1 举起一根手指(“41、42、43、44、45”)。
FCI 航空航天传感器可测量、警告和报警飞机流量、液位、温度和压力。FCI 传感器结构紧凑、重量轻,支持飞机设计目标,以减少空间并尽量减轻重量,从而提高能源效率。传感器可以是简单的元件,用于与系统电子设备集成以提供激励、线性化和诊断,也可以是完整的集成传感器 + 电子设备,位于紧凑的独立单元中,或者传感器和电子设备通过互连电缆远程安装和连接。传感器可以配备机械过程连接和电子连接,以满足您的安装要求。无论您的应用是 COTS、改进的 COTS 还是定制工程产品,FCI 航空航天都有符合您规格的传感器解决方案。