我们对基于 Al x Ga 1 x N 量子阱通道的 AlN/AlGaN/AlN 高电子迁移率晶体管 (HEMT) 的电气特性进行了成分依赖性研究,其中 x ¼ 0.25、0.44 和 0.58。这种超宽带隙异质结构是下一代射频和电力电子器件的候选材料。使用选择性再生长的 n 型 GaN 欧姆接触会导致接触电阻随通道中 Al 含量的增加而增加。DC HEMT 器件特性表明,对于 x ¼ 0.25、0.44 和 0.58,最大漏极电流密度分别从 280 mA/mm 逐渐降低到 30 mA/mm 再到 1.7 mA/mm。与此同时,这三个 HEMT 的阈值电压 (幅度) 同时从 5.2 V 降低到 4.9 V 再到 2.4 V。这一关于 Al 组分 x 对晶体管特性影响的系统实验研究为在 AlN 上设计用于高电压和高温极端电子器件的 AlGaN 通道 HEMT 提供了宝贵的见解。
在圣克拉拉县,废水测量结果显示出相同的模式。县公共卫生官员监测当地的废水,并测试四个当地下水道中的病毒浓度。根据州卫生部门监测的总废水监视数据,整个湾区地区的Covid水平刚刚从低到中间跨越,并且正在增加。
那些终身逆境较低,对威胁的神经激活较高的人以及在儿童中间和青春期中经历了低到中度逆境的人的神经激活降低了威胁的神经激活以及对安全性较高的神经激活以及寿命较高的逆境暴露和最小的神经激活的人的神经激活
考虑到南澳大利亚州在减少温室气体排放和气候变化适应方面取得的重大进展,其目标是将温室气体排放降低到2030年的2005年水平低于2005年的50%以上,并在2050年将净零排放量降低,并在2050年实现净零排放,并通过2027的净水能力将100%的可再生电力置于构建中。
我们还致力于实现金融稳定、谨慎的金融投资以及支持本地企业和创新。可持续性在很多方面始终是我们未来的关键问题,我们必须减少资源消耗,明确需要保护的领域,并确定我们的增长领域。我们需要平衡社区的需求,同时将生态影响降低到可持续的水平,我们将通过尊重自然环境和保护自然资源来做到这一点。
•热泵:将热量从冷热转移到热的东西。制冷剂使这种情况发生。•需要(通常是电)才能实现这一目标。从低到高的温度差越小,移动热量•如果外部冷,加热模式更难•但是,当温度非常低时,许多热泵仍然可以工作•通常,移动热量的效率比产生热量(例如使用电阻加热器)
通过铸造方法制备了由聚乙烯醇和羧甲基纤维素(PVA/CMC)组成的混合基质。SiO 2纳米颗粒以不同量的加固添加(Sio 2 = 1、2、3和4 wt。%)。这项研究利用FTIR来检查组成的变化以及混合矩阵与SIO 2的包含之间的相互作用。在第一次,使用接触角度和表面粗糙度参数的测量结果,使用SIO 2添加了SIO 2,研究了PVA/CMC混合矩阵的表面粗糙度和表面润湿性。随着SIO 2含量的增加,混合矩阵的表面粗糙度和润湿性增加。此外,混合矩阵光学特性由UV - 可见分光光度计确定。基于使用TAUC的关系分析,发现能量带隙从5.52降低到5.17 eV(直接过渡),从4.79降低到4.79 ev(pva/cmc和PVA/CMC和PVA/CMC/CMC/4%SIO 2 BlendEnflms)。PVA/CMC和PVA/CMC/4%SIO 2混合胶片的折射率从2.009增加到约2.144。此外,在添加SIO 2纳米颗粒后,PVA/CMC混合物的光学传导率和介电常数得到了改善。
摘要量子点蜂窝自动机(QCA)代表新兴的纳米技术,该纳米技术有望取代当前的互补金属 - 氧化物 - 氧化物 - 氧化电导剂数字整合电路技术。QCA构成了一种极为有希望的无晶体管范式,可以将其降低到分子水平,从而促进TERA级设备的整合和极低的能量耗散。可逆QCA电路的可逆性从逻辑级别降低到物理水平,可以执行比Landauer能量限制(KBTLN2)耗散能量更少的计算操作。逻辑门的时间同步是必不可少的附加要求,尤其是在涉及复杂电路的情况下,以确保准确的计算结果。本文报告了逻辑和物理上可逆的时间同步QCA组合逻辑电路的八个新的设计和仿真。此处介绍的新电路设计减轻了时钟延迟问题,这些问题是由逻辑门信息的非同步,通过使用固有的更对称的电路配置引起的。模拟结果证实了提出的可逆时间同步QCA组合逻辑电路的行为,该逻辑电路表现出超大的能量耗散,并同时提供了准确的计算结果。
我们的主要结果是从最坏的晶格问题(例如G AP SVP和SIVP)降低到某个学习问题。这个学习问题是“从奇偶校验和误差问题学习到更高模量的自然扩展。也可以将其视为从随机线性代码解码的问题。这很大程度上表明这些问题很困难。但是,我们的还原是量子。因此,对学习问题的有效解决方案意味着G AP SVP和SIVP的量子算法。一个主要的开放问题是,是否可以使这种减少的经典(即非量化)。我们还提出了一个(经典的)公钥密码系统,其安全性是基于学习问题的硬度。从主要结果来看,其安全性也基于G AP SVP和SIVP的最差量子量子硬度。新的加密系统比以前基于晶格的Cryposystems:公共密钥的大小〜O(n 2)和加密消息的大小增加了〜O(n)的倍数(在先前的密码系统中,这些值分别为〜O(n 4)和〜o(N 2))。实际上,在所有各方共享一个随机长度〜o(n 2)的假设下,公共密钥的大小可以降低到〜o(n)。