过去十年,我们见证了一系列成果丰硕的实验研究,其中低能中子束用于研究基本相互作用。这项工作包括宇称和时间反转对称性破坏、重子不守恒、弱相互作用、基本常数、电荷守恒和中子干涉术以及其他各种研究。这项工作对粒子物理学、核物理学、天体物理学和宇宙学具有重要意义。过去,这项工作的地理重点是法国格勒诺布尔劳厄-朗之万研究所 (ILL) 的高通量反应堆,并在德国和苏联的其他反应堆上投入了大量精力。虽然美国的研究人员在这一领域发挥了一定领导作用,但由于美国缺乏合适的低能中子设施,美国无法做出更大的贡献。
摘要。使用Newsubaru-bl01设施上的飞行时间方法测量了13和17 MeV线性极化光子梁的光核产生的光结核产生的双差分横截面(DDX)。极化光子。在光谱上观察到了两个不同的组件:低能成分高达4 MeV,高能高于4 MeV。低能分量的角度分布是各向同性的,而高能量是各向异性分布的,并受到光子极化和中子发射方向之间的角度的影响,尤其是对于17 MEV光子能量。这些现象类似于先前研究中观察到的197个AU靶标的现象。对于所有三个目标,在13和17 MEV光子能量处的低能中子分布几乎相同。计算了DDX能量整合,并比较了两光能能量的三个目标。给定入射光子的水平极化(平行于X轴的平面),X轴上90°的发射角分别记录了最大和最小的光拟合产率。这两个位置之间的差异为181 TA和NAT W时为13 MeV光子能量,而对于其他情况下。与181 TA和209 BI的实验结果相比,在Photoneutron DDXS上观察到了卷轴核数据文库的低估。
摘要:通过血脑屏障(BBB)输送药物是一个重要的挑战。尽管目前采取了BBB规避的策略,但纳米技术仍提供了前所未有的选择性,用于结合选择性递送,改善生物利用度,药物保护和增强的药代动力学专业生物。壳聚糖纳米载体允许在细胞和亚细胞水平上制定更有效的策略。硼中子捕获疗法(BNCT)是一种靶向化学放射性治疗技术,可以通过选择性标记为10 B的癌细胞选择性耗尽癌细胞,然后用低能中子进行照射。因此,封闭有效BNCT药丸团的基于聚合物的纳米递送系统的组合可能会导致选择性递送到BBB以外的癌细胞。在这项工作中,评估了基于Carborane官能化的Decalizatizational decalizatizatization型的生物染色阳离子(DLC)的合成的新型硼酸化剂,以确保肿瘤细胞的安全性和选择性靶向。然后将化合物封装在壳聚糖构成的纳米载体中,以通过BBB促进渗透性。此外,将壳聚糖与多吡咯结合使用,形成智能复合纳米胶囊,预计将释放其药物负荷,并在pH中变化。结果表明,通过Carboranyl DLCS实现了更具选择性的硼递送。最后,初步细胞研究表明,在壳聚糖纳米胶囊中未检测到毒性,从而进一步增强了其作为脑肿瘤BNCT潜在递送载体的生存能力。
