摘要。预计到 2050 年,风能将占全球产量的 35%,其中位于高风速地区的大型风力发电场将做出重大贡献。然而,在低风速地区,需要调整涡轮机以最大程度地提高效率。这导致了基于仿生原理的叶片的开发,这些叶片可提高此类条件下的性能。为了验证这种方法,提出了对传统涡轮机和仿生涡轮机进行空气动力学比较分析的建议。所提出的方法涉及使用计算流体动力学 (CFD) 模拟和叶片元素动量理论 (BEMT) 来预测两种设计的行为。评估功率系数 (Cp)、推力 (Ct)、轴向力和扭矩等变量,比较转子在相同条件下的性能。目标是确定仿生涡轮机的可行性及其在低风速(从 2.5 m/s 开始)下对水平轴风力涡轮机的适应性。经 CFD 和 BEMT 模拟验证的结果显示,仿生涡轮机的性能比传统转子高出 33%,凸显了其在恶劣环境条件下提高风能效率的潜力,尤其是在风速较低或不稳定的地区。这证明了仿生设计在增强可再生能源技术方面的可行性。
责任限制/免责声明 MATLAB ® 是 The MathWorks, Inc. 的商标,经许可使用。The MathWorks 不保证本书中文本或练习的准确性。本作品对 MATLAB ® 软件或相关产品的使用或讨论并不构成 The MathWorks 对特定教学方法或 MATLAB ® 软件特定用途的认可或赞助。虽然出版商和作者已尽最大努力编写本作品,但他们不对本作品内容的准确性或完整性作出任何陈述或保证,并特别声明放弃所有担保,包括但不限于对适销性或特定用途适用性的任何默示担保。销售代表、书面销售材料或本作品的促销声明不得创建或延长任何担保。本作品中引用某个组织、网站或产品作为引文和/或潜在进一步信息来源,并不意味着出版商和作者认可该组织、网站或产品可能提供的信息或服务或可能提出的建议。本作品的出售前提是出版商不提供专业服务。本文包含的建议和策略可能不适合您的情况。您应在适当的情况下咨询专家。此外,读者应注意,本作品中列出的网站可能在撰写本作品和阅读本作品之间发生变化或消失。出版商和作者均不对任何利润损失或任何其他商业损失负责,包括但不限于特殊、偶然、后果或其他损害。
3.0外展策略和实施活动遗产风的公共外展活动的主要目标包括公民参与该项目的开发,通过为公共投入/反馈和信息传播的沟通途径建立沟通途径;以及根据第10和94-C程序的清晰沟通利益相关者权利的沟通。遗产风项目的公共宣传工作于2016年提交了PIP。最初的外展工作始于确定利益相关者(请参阅PIP第3A节)。PIP中的初步利益相关者列表由90个实体组成,并随着时间的推移而发展,以包括通过公共宣传工作和反馈确定的利益相关者。该项目的第10条申请中包含的工作利益相关者列表包含500多个个人和实体,包括但不限于:联邦,州和地方机构,当选官员,社区组织,寄宿土地所有者,邻近的土地所有者以及涡轮机和该设施500英尺的2500英尺以内的居民和居民。自遗产于2021年1月13日过渡以来,该利益相关者列表已在整个94-C过程中进行了更新。Heritage Wind通过以下努力与这些确定的利益相关者互动:
bv(加利福尼亚州核桃溪;堪萨斯州欧弗兰公园)将进行项目管理,示范设计和数据分析。Hach(Loveland,Co)将设计与ML-AL工具包相关的元素。哥伦比亚大学(纽约,纽约)将进行与微生物种群有关的基准尺度分子实验。Argonne National Laboratory(IL Argonne)将开发用于NGNR监测的现场效应晶体管。现有的废水处理设施将在海沃德水污染控制设施(Hayward; Hayward,CA)上进行现场测试。Hayward将协助将在其设施中运行的飞行员规模和示范规模单元的设计,制造和操作。这些单元将被添加到设施内部的现有系统中。将对设施内处理的实际废水进行测试,二氧化氮传感器和NGNR系统。
在这篇综述中,堆的生物无能过程的一般机制,参与过程中涉及的微生物的类型以及每种微生物活动的适当条件,影响过程的优势和缺点的参数以及HEAP生物介绍过程的主要问题和限制。考虑到从矿山中提取的矿石等级的不断下降,以及沉积在加工厂和矿场上的大量低级尾矿,使用传统的Hydrometallurgy和PyromeTallurgy方法来恢复有价值的元素没有技术和经济的理由。另一方面,全球对贵金属的需求每天都在增加,但是宝贵的资源正在减少。因此,实现具有成本效益的方法的努力是不可否认的。使用微生物从上述低级来源溶解和回收有价值的材料是一种合适而重要的方法,这是一种合适而重要的方法,因为低投资,低要求的人力资源和简单的过程,并且在某种程度上没有环境并发症。但是,可以说使用微生物的主要问题是缓慢的动力学和实现所需结果的较长过程。关键字