第四族元素及其氧化物,如硅、锗、锡和二氧化硅,具有比商用石墨阳极高得多的理论容量。然而,这些材料在循环过程中体积变化很大,导致严重的结构退化和容量衰减。Al 2 O 3 涂层被认为是提高高容量阳极材料机械稳定性的一种方法。为了直接了解 Al 2 O 3 涂层的效果,我们使用原位聚焦离子束扫描电子显微镜 (FIB-SEM) 监测了循环过程中涂层/未涂层 Sn 颗粒的形貌变化。结果表明,Al 2 O 3 涂层提供局部保护并减少体积膨胀早期裂纹的形成。3nm Al 2 O 3 涂层比 10nm 和 30nm 涂层提供更好的保护。尽管如此,由于体积膨胀较大,Al 2 O 3 涂层无法防止循环后期的粉碎。
摘要 合金材料(如硅、锗、锡、锑等)具有高容量、合适的工作电压、地球资源丰富、环境友好和无毒等特点,是下一代锂离子电池(LIBs)和钠离子电池(SIBs)有前途的负极材料。虽然最近报道了一些有关这些材料的重要突破,但它们在合金化/脱合金过程中剧烈的体积变化会导致严重的粉碎,从而导致循环稳定性差和安全风险。虽然合金的纳米工程可以在一定程度上缓解体积膨胀,但仍存在其他缺点,例如初始库伦效率和体积能量密度低。由纳米颗粒和纳米孔组成的多孔微尺度合金继承了微米和纳米特性,因此多孔结构可以更好地适应锂化/钠化过程中的体积膨胀,从而释放应力并提高循环稳定性。本文介绍了多孔材料的最新进展
该方法适用于需要测定体积膨胀的静水试验。该方法包括将可测量体积的水压入装有已知重量和已知温度的水的气缸中,并测量释放压力时从气缸中排出的水量。气缸的永久体积膨胀是通过从压入气缸的水量中减去从气缸中排出的水的净体积来计算的。气缸的总体积膨胀是通过从压入气缸的总水量(达到测试压力)中减去由于测试设备的压缩性和体积膨胀而产生的水量来计算的。法规不允许使用此测试方法来鉴定气缸是否能充入超过标记工作压力 10% 的气体。所有重新测试人员都应拥有由 D.O.T./OHMS 颁发的重新认证人员识别号 (RIN)。在加拿大,测试设施在 T.C. 注册。
补偿硅离子电池中阳极活性材料的重复体积膨胀和收缩的一种有希望的方法是将硅嵌入石墨基质中。硅石材(SIG)复合材料结合了石墨的优势性能,即大型电导率和高结构稳定性,以及硅的优势性能,即高理论能力。石墨在静电片(≈10%)时的体积膨胀要比纯硅(≈300%)低得多,并且提供了机械稳定的矩阵。在此,我们提出了对多孔SIG阳极组成的电化学性能和厚度变化行为的研究,其硅含量范围从0 wt%到20 wt%。使用两种方法研究了电极复合材料:原位扩张法,以进行厚度变化研究和常规硬币细胞,以评估电化学性能。测量结果表明,SIG电极的初始厚度变化随硅含量显着增加,但在所有组合物的循环过程中均升高。硅含量与容量损失之间似乎存在相关性,但是厚度变化与容量损耗率之间没有明显的相关性。©2022作者。由IOP Publishing Limited代表电化学学会出版。这是根据Creative Commons Attribution 4.0许可(CC by,http://creativecommons.org/licenses/ by/4.0/)分发的开放式访问文章,如果原始工作适当地引用了原始作品,则可以在任何媒介中不受限制地重复使用工作。[doi:10.1149/1945-7111/ac4545]
4.1.5.2 氢气蒸发后体积膨胀超过 850 倍。氢气与空气形成易燃混合物,浓度范围很广,约为体积的 4% 至 75%。仅含 0.02 毫焦耳能量的火花即可点燃氢气;点燃空气中的甲烷所需的最低能量是氢气的 15 倍。此外,通常没有用于氢气服务的防爆电气设备;需要基于对氢气特性的透彻理解而定制设计的电气系统。最后,氢气会导致原本适用于低温服务的材料变脆。
需要具有适应特性的多孔层,例如,在传感器,执行器和其他具有低介电常数的功能层中,需要进行适应性。化学中,多孔层用于催化剂或过滤。由于多孔材料的内部表面积大,重点是能量转换应用,例如锂离子电池的超级电容器或创新阳极。硅是为此目的的有前途的材料。但是,需要多孔的Si矩阵来补偿充电过程中发生的机械应力和体积膨胀。
C /2 倍率下。 [5] 已证明,添加 FEC 的 Sn4P3 具有比锑 (718 mAh g −1) 更高的容量,尽管倍率较低,约为 C/10。 [6] 许多过渡金属氧化物和硫化物也因其高循环稳定性而被研究。与 Na2O 相比,硫化物电极转化为 Na2S 的可逆性更好,因此人们对其兴趣日益浓厚。[7–9] 这些电极有望实现高容量,但由于循环过程中体积膨胀,库仑效率低。 [5] 我们通过预处理来避免这种膨胀,形成限制体积变化的新相。过渡金属二硫属化物 (TMD) 如 TiS2 ,是锂离子电池初期开发过程中最早作为插层正极研究的材料之一。 [10] 客体离子与硫族化物发生转化反应形成 A2X(A=Li、Na;X=S、Se、Te),导致体积膨胀,限制容量。[11–14] 然而,客体与硫族化物主体之间较大的间隙体积和较弱的静电相互作用仍然是使用 TMD 电极的优势,尤其是在超锂离子电池的开发中。[15] 与氧化物相比,过渡金属硫化物中的钠电荷存储动力学有所改善,因此研究工作取得了进展。[7] 范德华 CrS2 被预测为 Na 和 Mg 的良好插层主体,它可以避免困扰 TMD 电池的副反应,但尚未分离为体相。[7,16]
闪点 COC ASTM D 92 / ISO 2592 °C 燃点 ASTM D 92 / 2592 °C 自燃点 DIN 51794/ ASTM E659 °C 倾点 ASTM D 97 / ISO 3016 °C 气味 n/a {TDS 规格} 颜色 ASTM D 156 / ISO 2211 {MSDS 规格} 硫含量 ISO 14596 ppm 比热容 ASTM E 1269 kJ/kg*K @ 40°C 热导率 ASTM D 7896 W/m*K @40°C 任意°C 下的密度 ISO 12185 kg/m3 @ #°C 体积膨胀 ASTM D 1903 /°C
覆盖范围的适应症,局限性和/或医疗必要性B型Natriaretic肽(BNP)是主要在左心室中产生的心脏神经激素。它是对心室体积膨胀和压力超负荷的响应,通常在充血性心力衰竭(CHF)中发现的因素。与其他临床信息结合使用,BNP的快速测量可用于建立或排除诊断和评估急性呼吸困难患者CHF的严重程度,因此可以启动适当及时的治疗。该测试还用于预测急性冠状动脉综合征在急性冠状动脉事件发生后的头几天进行测量的急性冠状动脉综合征的长期风险。
摘要 锂硫电池因其突出的理论能量密度而被视为未来储能系统的有希望的候选材料。然而,它们的应用仍然受到几个关键问题的阻碍,例如硫物质的低电导率、可溶性多硫化锂的穿梭效应、体积膨胀、缓慢的氧化还原动力学以及不可控的锂枝晶形成。人们投入了大量的研究精力来突破阻碍锂硫电池实现实际应用的障碍。最近,由于不含添加剂/粘合剂、体积变化的缓冲、高硫负载和锂枝晶的抑制,纳米阵列 (NA) 结构已成为锂硫电池中高效耐用的电极。在本文中,回顾了 NA 结构在锂硫电池中的设计、合成和应用的最新进展。首先,概述了 NA 结构电极在锂硫电池中的多功能优点和典型的合成策略。其次,NA 结构的应用