1土壤与景观科学,分子与生命科学学院,科学与工程学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。2分子与生命科学学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。 3 Ecohealth Network,1330 Beacon St,Suite 355a,Brookline,MA 02446,美国4土壤科学,荷兰瓦格宁根大学。2分子与生命科学学院,科廷大学,GPO盒U1987,珀斯WA 6845,澳大利亚。3 Ecohealth Network,1330 Beacon St,Suite 355a,Brookline,MA 02446,美国4土壤科学,荷兰瓦格宁根大学。
1 斯坦福大学医学院斯坦福癌症研究所,斯坦福,加利福尼亚州 94305,美国,2 斯坦福大学医学院医学系,斯坦福,加利福尼亚州 94305,美国,3 斯坦福大学医学院生物化学系,斯坦福,加利福尼亚州 94305,美国,4 癌症信号和表观遗传学计划和癌症表观遗传学研究所,福克斯蔡斯癌症中心癌症研究所,费城,宾夕法尼亚州 19111,美国,5 罗马大学生物学和生物技术系,意大利罗马,6 斯坦福大学生物医学数据科学系,斯坦福,加利福尼亚州 94305,美国,7 生物科学和生物资源研究所,IBBR,CNR,意大利那不勒斯,8 科隆分子医学中心人类遗传学研究所,科隆大学遗传学研究所,50931 科隆,德国,9科隆分子医学,科隆大学遗传学研究所,50931 科隆,德国,10 IFOM-The FIRC 分子肿瘤学研究所,米兰,意大利,11 分子遗传学研究所,CNR-Consiglio Nazionale delle Ricerche,帕维亚,意大利,12 生命纳米和神经科学中心,意大利基金会基金会Tecnologia (IIT),罗马 00161,意大利,13 人类技术中心,Fondazione Istituto Istituto Italiano di Tecnologia (IIT),热那亚 16152,意大利,14 Department of Biology, Howard Hughes Medical Institute,Stanford University,Stanford, CA 94305, USA,15 Institute for Zoology, Developmental Biology,University of Cologne, 50674 Cologne,德国,16 帕多瓦大学生物系,意大利帕多瓦、17 哥伦比亚大学运动神经元生物学和疾病中心、纽约 10032、美国、18 哥伦比亚大学病理学和细胞生物学系、纽约 10032、美国、19 哥伦比亚大学神经病学系、纽约 10032、美国、20 科隆大学医院罕见疾病中心、科隆 50931、德国和 21 CNR 分子生物学和病理学研究所 (IBPM)、意大利罗马
摘要:BRCA1是一个编码BRCA1蛋白的肿瘤抑制基因,在DNA修复,细胞周期调节和基因组稳定性的维持中起着至关重要的作用。BRCA1蛋白与各种其他在基因调节和胚胎发育中起重要作用的蛋白质相互作用。它是由多个结构域组成的大蛋白质。BRCA1蛋白的C末端区域由两个由短接头连接的BRCT结构域组成。BRCT结构域在蛋白质 - 蛋白质相互作用以及通过其磷酸化蛋白结合模块中调节DNA损伤反应和细胞周期调节至关重要,这些模块识别其他激酶的磷酸化蛋白序列基序。BRCT结构域中的突变会破坏BRCA1的正常功能,并导致患乳腺癌和卵巢癌的风险增加。在此,我们探讨了BRCA1的结构特征,重点是BRCT结构域,其与关键细胞成分的相互作用及其参与各种细胞过程。此外,讨论了BRCT结构域突变对乳腺癌和卵巢癌敏感性,预后和治疗选择的影响。通过对BRCA1的BRCT结构域提供全面的了解,本综述旨在阐明该重要领域在乳腺癌和卵巢癌的发病机理和潜在的治疗方法中的作用。
描述 GORE® EXCLUDER® 可适形 AAA 内假体 GORE® EXCLUDER® 可适形 AAA 内假体 (EXCC) 可用于肾下腹主动脉瘤 (AAA) 的血管内治疗。GORE® EXCLUDER® 可适形 AAA 内假体是一个多组件系统,包括躯干同侧腿内假体、对侧腿内假体、用于近端延伸的主动脉延长器内假体和用于远端延伸的髂骨延长器内假体。每个组件的移植物材料均为膨体聚四氟乙烯 (ePTFE) 和氟化乙烯丙烯 (FEP),由沿其外表面的镍钛诺 (镍钛合金) 丝支撑。镍钛合金锚固件和 ePTFE/FEP 密封套位于主干前端(近端)(图 1A、1B 和 1C),密封套位于主动脉扩展器的前端(近端)(图 4)。所有组件均带有金色不透射线标记,便于观察(图 1、2、4 和 6A)。ePTFE/FEP 套管用于将内置假体限制在输送导管上(图 3A、3B、3C、3D 和 5A)。GORE® EXCLUDER® 可适形 AAA 内置假体的所有组件均采用低渗透性设计,这是唯一可用的设计。GORE® EXCLUDER® 可适形 AAA 内置假体的每个组件如下所述。
摘要本文通过使用基于学习的方法从有限数量的观点中解决了层析成像重建的挑战。通过使用高斯denoing算法的能力来处理复杂的优化任务,通过插入式游戏(PNP)算法的最新进步(PNP)算法显示了求解成像逆概率的希望。传统的denoising手工制作的方法产生具有可预测特征的图像,但需要复杂的参数调整并遭受缓慢的结合。相比之下,基于学习的模型可提供更快的性能和更高的重建质量,尽管它们缺乏解释性。在这项工作中,我们提出培训近端神经网络(PNN),以消除任意伪像并改善PNP算法的性能。这些网络是通过展开旨在找到最大后验(MAP)估计值的近端算法获得的,但使用学习的线性运算符在固定数量的迭代范围内获得。pnns提供了灵活性,可以通过近端算法来适应任何图像恢复任务。此外,与传统的神经网络相比,它们具有更简单的体系结构。
产品说明TC-10X建议用于正常应用中的高温传热。它是在加热设备和安装到的表面或其他散热表面之间使用的。该产品具有出色的热阻力,具有高热导率,并且在宽的工作温度范围内几乎没有蒸发。它是耐氧化性的非可易碎油基化合物,不会促进生锈或腐蚀。
均值最大熵 (MEM)4-6 和深度补偿 7 到加权最小范数 (WMN) 或 Tikhonov 正则化。根据我们的经验,由于正则化方法的性质,这些方法往往会高估假阳性率。8 先前的研究 9-11 建立了贝叶斯模型,结合皮质/头皮区域的先验信息、灵敏度归一化等,以消除头皮伪影、提高深度精度和空间分辨率以及进行多主体和多任务实验。然而,大脑功能区域的大脑解剖结构的先验空间信息从未在当前的 fNIRS 图像重建方法中得到适当使用。在本文中,我们描述了一种用于 fNIRS 图像重建的自适应融合稀疏重叠组套索 (a-FSOGL) 正则化方法。a-FSOGL 模型使用脑空间体素分组先验(例如来自基于图谱的感兴趣区域)来规范图像重建过程。为了更好地利用先验信息,我们开发了一个贝叶斯框架,通过将先验信息与适当的统计分布结合起来来解决该模型。该框架是基于先前对贝叶斯套索模型及其扩展的研究 12 – 16 建立的。我们的模型通过组合现有模型并涉及更多先验参数,将贝叶斯套索模型向前扩展了一步。在本文中,我们将首先简要回顾光学正向和逆模型的原理,然后推导出 a-FSOGL(Ba-FSOGL)的贝叶斯模型及其相关的统计属性,然后使用模拟 fNIRS 测量和实验数据演示该方法。本文的结构如下。理论部分(第 2 部分)概述了光学正向模型。在方法部分(第 3 和 4 部分),我们描述了 Ba-FSOGL 模型、模拟配置和实验数据收集。图像重建和统计推断的结果显示在第 4 部分中。 5,我们最后在第 6 节中讨论结果的发现和模型的局限性。在模拟研究中,我们重点关注前额最近邻双侧 fNIRS 探头的示例,并检查推断由基于图谱的布罗德曼区域 (BA) 分区定义的额叶和背外侧大脑区域变化的能力,然而,实验研究表明,这种方法可作为先验信息适用于任何大脑空间分区模型。
机械设备:与太阳能系统相关的任何设备,例如户外电动机/控制盒,都将能量从太阳能系统转移到预期的现场结构。太阳能访问:财产所有人在所有者的土地上拥有阳光照射的权利。(该权利的执行是通过建立高度和挫折要求的分区条例。)太阳能系统:一个能量转换系统,包括附属系统,将太阳能转换为可用的能源形式,以满足现场用户的全部或部分能源需求。该定义应包括被动太阳能和主动太阳系。太阳眩光:由太阳能电池板反射的光所产生的效果,其强度足以引起视觉性能和可见性的烦恼,不适或损失。第2节。适用性: