全球抗菌耐药性(AMR)不断升级的危机需要发现新型抗菌剂来解决抗性病原体的日益增长的威胁。长期以来在民族医学中长期使用的传统药用植物代表了一种有价值且在很大程度上未开发的抗菌剂发现资源。本文探讨了这些植物作为新抗菌剂的来源的潜力,讨论了民族植物知识的作用,生物活性植物化学物质的多样性以及植物衍生的化合物对抗微生物病原体的机制。但是,从传统疗法到可扩展的药物开发的过渡充满了挑战,包括标准化,科学验证,监管障碍和可持续性问题。尽管存在这些障碍,生物技术的进步,纳米技术和协同表述提供了有希望的解决方案,可增强基于植物的抗菌素的生物利用度和有效性。本文还强调了成功的案例研究,例如疟疾的青蒿素,这证明了传统植物在商业药物开发中的潜力。结论强调了持续的跨学科研究,全球合作和道德方法的必要性,以解锁传统药用植物在与AMR斗争中的治疗潜力。
摘要 - Microservices是一种主要的云计算体系结构,因为它们可以作为松散耦合服务的集合构建应用程序。为了对所得分布式系统提供更大的控制,微服务通常使用称为“服务网格”的覆盖代理网络。服务网格的关键优势是它们通过使用相互认证的TLS加密微服务流量来实现零信任网络。但是,服务网格控制平面(尤其是其本地证书授权)的信任点是一个关键点。在这张海报中,我们介绍了M Azu,该系统旨在通过用无私人的校长替换其认证权限来消除对服务网格控制平面的信任。m azu利用了基于注册的加密的最新进展,并与广泛使用的服务网格无缝集成。我们介绍我们的初步实施,并强调未来的工作。
我们理解并赞赏温室气体核算体系正在修订其标准,以期明确使用基于市场的方法。在修订过程中,必须提供确定性并制定规则:基于先前指导的临时声明应明确指出,修订过程结束时将承认基于市场的工具。自前范围 2 指导附件撤回以来,市场参与者缺乏一个让他们确定投资的框架,而 2023 年 8 月的“生物甲烷证书核算临时更新”并未提供明确的指导。
软开放点(SOP)(SOP),也称为软点,通常是电源电子转换器,用于电源分配网络中,与传统的正常开放点(NOP)和正常截断点(NCP)相比,可以实质上改善对功率流的控制,如图1所示。径向(通常打开)和网格(通常关闭的)分销网络都有几个优点和缺点。径向网络很简单,但不是很可靠。相反,网格网络提供一定程度的冗余,以在发生故障时继续电源,但需要更复杂的保护安排[1-2]。因此,SOP是设计混合网络的最佳候选者,在该网络中可以根据实际的网络条件实际切换到radial层转换为网状,反之亦然。SOP可以控制主动和反应幂的流动,并调节分布网络不同节点之间的电压。它们也可以用于更改网络的配置,以提供由故障隔离的负载,或者在网络中的一个进料器上隔离不良和故障,而不是减轻对其他馈线的故障。以前的技术文献已经彻底介绍了中型电压发电网络的SOP的不同结构和控制方法,并证明了网络操作的改进[3-5]。但是,到目前为止,尚未对铁路和分销网络之间的SOP技术应用。此外,电气铁路这两个网络都将受益于更集成的设计,特别是:i)减少功率损失,ii)在场景中保存电网稳定性,其局部可再生能源(RES)高渗透率,iii)电动汽车(EVS)的充电站(EVS),电气能源和优先人。
在 2023 年联合国粮食及农业安全峰会 (UNFSS+2) 的第一次盘点会议上,联合国秘书长的行动呼吁强调需要加强企业和私营部门的参与。秘书长特别强调了“通过公私伙伴关系等方式促进企业参与,以塑造粮食系统的可持续性,建立和加强问责机制,认识到它们对粮食系统的核心作用”作为六个优先行动领域之一的重要性。因此,在第二次盘点会议 (UNFSS+4) 之前,并根据秘书长的行动呼吁,联合国粮食及农业安全峰会 (以下简称“峰会”) 正在加大力度与不同参与者接触,旨在提高他们的雄心壮志,为成功实施粮食系统转型进程做出贡献,并催化人类、地球和繁荣的可衡量改善。
国际计算机工程技术杂志(IJCET)第16卷,第1期,Jan-Feb 2025,pp。1750-1767,文章ID:IJCET_16_01_128在https://iaeme.com/home/issue/issue/ijcet?volume=16&issue = 1 ISSN印刷:0976-6367; ISSN在线:0976-6375;期刊ID:5751-5249影响因子(2025):18.59(基于Google Scholar引用)doi:https://doi.org/10.34218/ijcet_16_01_1_128©iaeme Publication
匹兹堡大学通过基于扫描分解的基于扫描模拟的反馈 - 馈线控制执行摘要摘要大大降低了激光粉池床融合添加剂制造的融化池和微观结构的变化:管理当地几次对激光粉末床融合(L-PBF)添加剂生产性能的影响是最高核心的一项优先级。因此,该程序的目的是开发一种基于仿真的反馈馈电控制方法,以维持整个L-PBF部分的熔体池和微观结构的一致性。特定的研究目标包括:(1)基于通过不同过程参数产生的测量熔体池维度开发经过实验验证的计算流体动力学(CFD)模型; (2)开发有效的混合CFD和FEM(有限元方法)模型,以模拟多轨,多层方案; (3)开发基于迭代模拟的反馈 - 馈线控制模型。该项目中的重点材料是基于镍的合金inconel 718,它广泛用于高温核应用中,例如核反应堆核心和热交换器。拟议的研究旨在解决核能社区中L-PBF进程的资格和更广泛采用的关键障碍。核芯和热交换器等核应用通常包含不同尺寸的几何特征,这会导致熔体池和微观结构在整个零件过程中差异很大。拟议研究中的关键创新是开发了混合CFD-FEM模拟模型,该模型为此基于反馈 - 反馈控制方法。通过使用准确的扫描分辨过程模拟,通过调整过程参数(激光功率和扫描速度)来最佳控制熔体池尺寸,预计熔体池和微观结构将在整个复杂部分中更加一致。通过减少新的L-PBF产品开发中昂贵的实验数量,可以以较低的成本进行熔体池和微观结构一致性的巨大改进,以更有效地执行资格。大多数L-PBF热过程模拟模型使用CFD或FEM;但是,前者是准确的,但在计算上非常昂贵,而后者是有效的,但不足以捕获熔体池的尺寸和温度,而随着局部几何形状的变化。在拟议的CIFEM(CFD施加的FEM)过程仿真模型中,瞬态热场是根据高保真CFD模拟计算的,并通过深度学习来推断。这些温度值是根据局部热环境所包含熔体池的局部FEM区域施加的,而其他地方的热传导则由FEM求解。开发的基于CIFEM的工艺模拟预计将是基于CFD的模拟效率的30-50倍,同时保持熔体池和温度场的预测准确性。使用CIFEM模型最佳地控制局部过程参数,预计熔体池尺寸的变化将减少50-70%,从而导致更一致的微观结构。因此,该项目将解决社区中的基本优先事项之一,并有助于促进更广泛的L-PBF程序在安全至关重要的核应用中。首席调查员:Albert C. TO,Albertto@pitt.edu
量子纠缠通常被认为是量子计算和量子模拟的核心资源。然而,由于缺乏足够可扩展和灵活的认证工具,在多体系统中检测量子纠缠的能力受到严重限制。这个问题在纠缠结构先验未知且不能依赖现有纠缠见证的情况下尤其关键。在这里,我们实施了一种方案,其中可以使用任意可观测量的平均值知识以可扩展、认证和系统的方式探测多体纠缠。具体而言,我们依赖于正半定条件,与基于部分转置的标准无关,如果数据可以通过可分离状态再现,则必须遵守这些条件。违反任何这些条件都会产生针对感兴趣数据的特定纠缠见证,从而揭示数据的显着特征,这些特征是无法在没有纠缠的情况下再现的。我们通过探测与现有实验相关的数百个量子比特的理论多体态来验证这种方法:一维 XX 链中的单粒子淬灭;具有 1 / r 3 相互作用的二维 XX 模型中的多体淬灭;以及海森堡和横向场伊辛链的热平衡态。在所有情况下,这些调查都使我们发现了新的纠缠见证,其中一些可以通过分析来表征,从而推广了文献中现有的结果。总之,我们的论文介绍了一种灵活的数据驱动纠缠检测技术,用于未表征的量子多体态,与量子优势机制中的实验直接相关。