欧洲国家的目标是在本世纪中叶之前实现净零CO 2排放。因此,欧洲能源系统,尤其是电力系统必须发生重大变化。脱碳需要越来越多的迁移率和加热部门的电气化,这使电保留在通往净零CO 2排放的路径上的核心作用。但是,要满足排放靶标,电力供应必须起源于低排放的产生来源。根据Tyndp 2018的情况,预计欧洲的电力供应将主要来自可再生能源转换器,从而引入了能源系统的新挑战。由于可再生能源的季节性,包括瑞士在内的大多数欧洲国家都将面临电力系统供应的季节性失衡。根据缺乏电力的国家的国家能源战略,应涵盖其邻国进口供应的短缺。这项研究评估了不同平衡区域和高度可再生能源系统之间的并发赤字和剩余情况。因此,根据已出版的场景,通过分析瑞士及其邻国奥地利,德国,法国和意大利的案件来确定可能的不可行的能量平衡。结果表明,瑞士及其邻国尤其是在冬季,存在同时存在的赤字情况。因此,该分析的结果挑战了当前的能源策略,并旨在达到瑞士和欧洲的净零CO 2排放。
现有文献表明,计算机模拟可以揭示微观个体的特征如何引起系统整体的宏观现象。本文旨在将这种重要的基于模拟的观察结果建立在坚实的基础上,作为理论结果。本文不仅探讨整体现象何时可以自然地从微观特征中产生,还探讨了许多宏观实体如何以及为何似乎通过将微观主体有机地聚集到统一导向的运作整体中来响应市场呼声,即使这些主体的利益不一致甚至相互冲突。本文根据系统科学的结果得出结论,并建立了一个充分条件,在此条件下,微观主体的特征可以自然地导致系统整体的宏观特性的出现,即使前者是异质的并且表现为
抑制或稳定有丝分裂中的 SUMO 化都会导致染色体分离缺陷,这表明蛋白质的动态有丝分裂 SUMO 化对于维持基因组的完整性至关重要。Polo 样激酶 1 - 相互作用检查点解旋酶 (PICH) 是一种有丝分裂染色质重塑酶,它通过三个 SUMO 相互作用基序 (SIM) 与 SUMO 化的染色体蛋白相互作用,以控制它们与染色体的结合。使用条件性 PICH 耗竭/PICH 替换的细胞系,我们发现有丝分裂缺陷与 PICH 对 SUMO 化染色体蛋白的功能受损有关。PICH 的重塑活性或 SIM 缺陷会延迟有丝分裂进程,这是由纺锤体组装检查点 (SAC) 激活引起的,这由着丝粒处 Mad1 焦点的持续时间延长所表明。通过对染色体 SUMO 化蛋白(其丰度受 PICH 活性控制)进行蛋白质组学分析,确定了可解释 SAC 激活表型的候选蛋白。在已确定的候选蛋白中,PICH 缺失时 Bub1 着丝粒丰度会增加。我们的研究结果证明了 PICH 和 SAC 之间的新关系,其中 PICH 直接或间接影响着丝粒上的 Bub1 关联,并影响 SAC 活性以控制有丝分裂。
理由:急性肺损伤(ALI)/急性呼吸窘迫综合征(ARDS)是一种关键综合征,死亡率高达40%,其特征是突出的炎症级联反应。通过用作炎症反应的关键信号平台来调节各种炎症相关疾病,炎症体和热吞作用在调节各种炎症有关的疾病中起着至关重要的调节作用,并介导了大量炎症因素的释放。我们先前的研究证实,GC-1是一种临床甲状腺激素类似物,通过恢复上皮细胞中的线粒体功能有效地减轻肺纤维化。然而,GC-1对巨噬细胞炎症体组装和肺损伤中的凋亡以及基础机制的潜在影响尚不清楚。方法:通过评估肺病理学,BAL液体中IL-1β和IL-18的浓度,评估了GC-1对肺损伤,氧化损伤和炎症的影响,在ALI(LPS或HCL诱导的模型)中评估了氧化损伤和炎症。此外,通过检查小鼠肺泡巨噬细胞中的ROS水平,NRF2信号传导和炎性体适配器蛋白ASC水平,研究了GC-1对ROS介导的炎性体组装和热吞作用的影响。NRF2抑制剂ML385和线粒体ROS抑制剂Mito-Tempo用于进一步阐明GC-1对NRF2-P53-ASC途径的影响。一致地,GC-1抑制了巨噬细胞中的ASC募集和寡聚化,这抑制了IL-1β和IL-18的Gasdermin d介导的释放。结果:GC-1显着缓解了ALI模型小鼠的炎症和肺损伤,如肺病理学,炎症细胞因子水平,ROS产生和投射率所示。这些发现表明炎性体组装和凋亡开始减少。进一步的研究表明,GC-1可以通过NRF2信号传导来减轻线粒体损伤引起的氧化应激,从而抑制ROS激活的p53和靶基因ASC的表达。ML385可以逆转GC-1的这种保护作用,并通过mito-tempo模仿。结论:本研究提出了一种治疗ALI的新机制,其中GC-1抑制了通过NRF2-P53-ASC途径抑制巨噬细胞ROS介导的炎性体组装和pyproptosis。这些发现突出了将GC-1用作抗炎和抗氧化剂在治疗ALI/ARDS中的有希望的潜力。
致作者的评论(必填):在本稿中,Lama 及其同事认为 PICH 重塑了 SUMO 化蛋白,以确保纺锤体组装检查点的正确暂时沉默。支持这一想法的主要观察结果是,PICH 的消耗,或在缺乏内源性 PICH 的细胞中重新表达缺乏 SUMO 结合能力或 ATPase 活性的外源性 PICH 突变体(分别被识别为 PICH ∆3SIM 和 K128A)在有丝分裂中(非常轻微地)延迟。作者询问这种短暂的停滞是否是由 Topo2alpha 依赖性通路的激活引起的(在之前的论文中进行了描述,并命名为 TRC,代表 Topo2alpha 响应检查点)。在得出事实并非如此的结论后,他们转向纺锤体组装检查点 (SAC),并发现在 PICH 消耗时或在表达功能失调的 PICH 突变体的细胞中,检查点蛋白 MAD1 在动粒上的停留时间延长。由于已知 PICH 会与 SUMO 化蛋白相互作用,作者推测 PICH 的缺失或用突变体替代可能导致 SUMO 化蛋白的积累,这可能是观察到的有丝分裂延迟的原因。为了验证这个想法,作者生成了一个表达标记 SUMO2 的细胞系,并比较了在存在或不存在 PICH 功能的情况下 SUMO2 结合蛋白的丰度。这确定了几种蛋白质,当 PICH 功能受损时,它们的 SUMO 化似乎会增加。在这些蛋白质中,作者确定了 BUB1,并证明在 PICH 缺失后 BUB1 动粒水平略有增加,这种影响可能是由于检查点激活恢复缺陷造成的。作者的模型是 PICH 有助于从动粒中去除 SUMO 化蛋白以促进检查点沉默。本文介绍的工作是通过创建几个细胞系实现的,清楚地反映了作者的大量宝贵努力。这项研究的主要局限性在于,观察到的影响非常小,并且没有最终证据表明导致这些影响的 PICH 的功能是精确且完全调节性的。它可能反映出持续的小附着错误,可能是由着丝粒染色质组织中的小问题引起的,该问题会向 SAC 发出信号。也就是说,延迟可能不只是反映出沉默错误,而是持续的检查点激活,这是作者没有解决的问题,而且考虑到停滞的实体很小,这个问题很难解决。在这方面,提出的模型也将过度的 SUMO 化确定为有丝分裂延迟的原因,虽然并非难以置信,但在分析的这个阶段似乎没有得到充分支持。在没有 PICH 的情况下观察到 SUMO 化增加,但细胞能够在对照细胞之后几分钟离开有丝分裂,这意味着必须存在处理过量 SUMO 的其他蛋白质。由于作者没有排除有丝分裂延迟仅仅是由真正的 SAC 激活引起的,PICH 在控制 SUMO 化方面的作用仍不确定。因此,总的来说,我认为这项研究虽然很有价值,但尚未代表完全令人信服的概念或机制进步。其他问题 - 图 1c 和 2c 中 ∆PICH 细胞中有丝分裂时间的差异引发了一致性问题。为什么这两种情况下有丝分裂退出的时间不同? - 在图 3 中,∆PICH 细胞中动粒处 MAD1 的持续时间远远超过 50 分钟,即远远超过这些细胞退出有丝分裂所需的时间(约 35 分钟,如图 1 所示)。这似乎相当难以置信,因为 MAD1 从动粒处的丢失总是先于有丝分裂退出。次要观点 -图 1B:最后一行,第 5 个面板,右下角部分隐藏的文本 -图 1C:如果作者指出此图中所示各种条件下有丝分裂退出的平均时间,将会很有帮助。 -在文本和相关图中指出 TopoIIalpha 带有 FLAG 标记
第57页),而肝组织仍在手动进行。“我们将准备就绪的成分应用于重新确定的皮肤并评估其毒性,模拟人体功能,”化妆品巨头Natura的研究人员生物学家Juliana Lago解释说,该研究人员在2023年上半年采用了这种技术。从一家德国公司进口,BOC加入了自2006年以来使用的其他技术,用于对美容,个人卫生和香水产品的安全性和有效性测试,作为动物的亚型,因为动物测试是在2023年3月进行的,由巴西动物动物实验控制委员会(Concipe of Science,Inceperifiend)(查看PRESESPA)(priestife fore)(查看PRESESPA)不。245)。除了表明他们遭受外部代理造成的伤害外,f
2型糖尿病(T2D)是全球发病率和死亡率的主要原因[1]。与没有糖尿病的人相比,T2D几乎使死亡率的风险几乎增加了一倍[2],主要是由于循环条件,但越来越多地来自癌症或神经退行性原因[3]。种族是T2D的广泛认可的风险因素;例如,与白人种族相比,南亚和黑人种族的人的患病率较高(南亚,黑人和白人种族的普遍存在:分别为7.7%,5.6%,5.0%),发病率增加(2-3次)和较低的诊断年龄(最高10岁)[4-8] [4-8]。eTh-neity在发展与糖尿病相关的补充方面也影响了后续后遗症,因此,通过种族来理解并发症的差异很重要,因为它可以考虑可能影响死亡率风险的人[4]。最近发生了与T2D相关的死亡率的实质性变化[3,9]。与Vascu相关的临床结果已经下降,因此需要对种族差异的最新证据进行审查[3,9]。糖尿病中的全因死亡率总体上降低了,这被认为是由于治疗途径的改善,风险因素的管理和整体生活方式行为[3,9]。虽然较早的评论强调了T2D种族群体之间死亡率的差异,但这些差异并未通过荟萃分析来量化[10,11]。然而,最近的系统综述和荟萃分析不包括其中一些较大的近期队列研究[7,12,15,16]。来自不同国家的几项大型队列研究,比较了不同种族之间的死亡风险[7,12 - 15]。它包括一些历史人群(2000年前),当T2D管理大不相同时,T2D和其他健康状况的人群(例如,患有多种慢性病的人,例如心脏瓦斯氏病,阿尔茨海默氏病或中风),因此可能不会代表每个种族的T2D人群[16]。审查还没有将南亚种族[16]与其他种族进行比较,更广泛地说,以前没有该群体的死亡率定量比较与其他种族。涉及社区中所有2型糖尿病患者(包括南亚种族的糖尿病患者)的一种全群人的方法,将使不同种族之间进行强有力的比较。因此,需要对族裔群体之间T2D的全因死亡率差异进行更现代和强大的分析。这很重要,因为它将具有关键的研究和临床意义,尤其是在推动可以解释任何死亡率风险差异的因素上的进一步研究中,告知未来重点的临床干预措施,并努力努力改善T2D的结果。这项系统审查和荟萃分析的目的是使用基于人群研究的数据来比较来自不同种族的T2D患者的死亡风险。
抽象的单细胞RNA测序(SCRNA-SEQ)正在彻底改变对复杂和动态细胞机制的研究。然而,细胞类型的注释仍然是一个主要挑战,因为它主要依赖于先验知识和手动策展,这是繁琐且主观的。越来越多的SCRNA-SEQ数据集以及众多已发表的遗传研究激励了我们建立全面的人类细胞类型参考地图集。在这里,我们介绍了解码细胞类型特异性(DECS),这是一种自动细胞类型注释方法增强了人类细胞类型表达pro纤维和标记基因的全面集合。我们使用DECS来注释来自各种组织类型的SCRNA-SEQ数据,并系统地评估了在不同条件下的注释精度,包括参考面板,测序深度和特征选择策略。我们的结果表明,扩展参考对于提高注释准确性至关重要。与许多现有的最新注释工具相比,分数显着减少了计算时间和提高准确性。DEC可以集成到标准的SCRNA-SEQ分析管道中,以增强细胞类型的注释。最后,我们证明了DECS的广泛效用
虽然使用单细胞 RNA 测序 (scRNA-seq) 来了解靶标生物学已得到充分证实,但其在提高治疗靶标临床成功率方面的预测作用仍未得到充分探索。受先前关于遗传证据与临床成功之间关联的研究的启发,我们使用已知药物靶标基因的回顾性分析从 scRNA-seq 数据中识别靶标临床成功的潜在预测因子。我们研究了成功的药物靶标是否与疾病相关组织中的细胞类型特异性表达(细胞类型特异性)有关,以及与健康对照相比疾病患者中的细胞类型特异性过度表达(疾病细胞特异性)有关。通过分析疾病和组织的 scRNA-seq 数据,我们发现细胞类型和疾病细胞特异性都是进入临床开发的靶标中富集的特征,并且疾病相关组织中的细胞类型特异性可以可靠地预测靶标从 I 期到 II 期的进展。虽然 scRNA-seq 分析确定了比直接遗传证据更大且互补的靶标空间,但它与特异性和药物批准的关联似乎不太明确。我们讨论了如何进一步扩展和协调单细胞数据集、在目标发现中更复杂地整合这些数据、以及改进跟踪临床试验结果的方法,以增强我们在未来利用 scRNA-seq 洞察力进行药物开发的能力。
免责声明 本信息是根据美国政府机构资助的工作编写的。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。