2024 年 2 月 22 日 — 零件编号或规格。按规格。使用的设备名称。数量。单位。品牌。模式。到期日期等……本规范适用于防卫省和自卫队使用的安全确认系统(以下简称“本系统”……
2024年4月10日 — 我们使用小型终端,该终端采用厚生劳动省推荐的操作系统。 监护仪可以与电子病历共享(使用切换设备)。 *厚生劳动省推荐的操作系统。专用终端安装图像
2024年7月1日——......未经国防部批准不得进行。本协议终止后亦同。 4.3 设备、机械和消耗品。加工所需的设备、机械和消耗品在采购说明中规定。
我们提出了一种使用多体分离式化催化的方法来加快量子绝热算法的方法。这将应用于随机场抗铁磁液体自旋模型。该算法的催化方式使得进化在过程中间近似于海森堡模型,并且该模型处于离域相。我们以数字方式显示,我们可以加快标准算法来使用此想法来查找随机模型的基础状态。我们还证明了加速是由于差距扩增而引起的,即使基础模型并非没有挫败感。分频器到加速度大致出现在相互作用的值中,这被称为离域转变的关键。我们还将参与率和纠缠熵计算为时间的函数:他们的时间依赖关系表明该系统正在探索更多的状态,并且比没有催化剂时更纠缠。一起,所有这些证据都表明加速与离域有关。即使只能研究相对较小的系统,但证据表明,该方法的缩放尺寸是有利的。通过一台小型在线IBM量子计算机的实验结果来说明我们的方法,显示了如何随着这些机器的改善来验证该方法。与标准算法相比,催化方法的成本只是一个恒定因素。
下一代半导体设备需要超低介电常数(ULK)材料,例如线结构后端的多孔SICOH,以使较低的电阻和电容(RC)时间延迟,但是,这些ULK材料在蚀刻过程中容易受到损坏。在这项研究中,纳米级牙线掩盖多孔的sicoH的蚀刻特征,例如蚀刻速率,蚀刻效果,表面损伤等。和等离子体特性,已使用双电频电容性耦合等离子体系统(DF-CCP)进行了研究,并通过使用用于低k介电蚀刻的常规C 4 F 8基于CC 4 F-CCP的气体进行了比较。结果表明,对于多孔SICOH的相似蚀刻速率和蚀刻率,与C 3 H 2 F 6的蚀刻相比,观察到较低的侧壁损伤。The analysis showed that it was related to less UV (less than 400 nm) emission and less fluorine radicals in the plasma for C 3 H 2 F 6 compared to C 4 F 8 , which leads to less fluorine diffusion to the sidewall surface of the etched porous SiCOH by the fluorine scavenging by hydrogen in C 3 H 2 F 6 .
量子算法在各种应用中都比经典算法有显著的加速。本文使用块编码方法开发了广泛应用于经典控制工程的卡尔曼滤波器的量子算法。整个计算过程是通过在块编码框架上对汉密尔顿量进行矩阵运算来实现的,包括加法、乘法和逆运算,与以前解决控制问题的量子算法相比,这些运算可以在统一的框架中完成。我们证明,与传统方法相比,量子算法可以指数级加速卡尔曼滤波器的计算。时间复杂度可以从 O ( n 3 ) 降低到 O ( κpoly log( n/ϵ ) log(1 /ϵ ′ )) ,其中 n 表示矩阵维数,κ 表示要求逆矩阵的条件数,ϵ 表示块编码所需的精度,ϵ ′ 表示矩阵求逆所需的精度。本文为实现卡尔曼滤波器提供了全面的量子解决方案,并试图拓宽量子计算应用的范围。最后,我们给出了一个在 Qiskit(一个基于 Python 的开源工具包)中实现的说明性示例作为概念验证。
关键词:光束法区域网平差、自校准、系统校准、非度量相机 摘要 使用市售的非度量相机(例如佳能、尼康)进行摄影测量操作正变得非常流行。使用它们的原因有几个,例如有效载荷更轻、传感器成本低、尺寸更小,以适应有限的机载空间(例如无人机作为数据采集平台)、快速周转项目、易于更换等。与使用数字高分辨率度量图像传感器(Hexagon DMC、Microsoft Vexcel UltraCam 系统等)相比,所有这些属性都具有优势。然而,为了获得接近使用度量系统获得的结果,必须考虑上述非度量图像传感器的所有系统误差;对它们进行建模并消除(或尽量减少)它们对所获取图像的影响。本文回顾了与使用非度量图像传感器相关的功能和随机模型。将关注传感器内部校准参数,即校准焦距、主点、对称 - 非对称 - 切向镜头畸变模式和可能严重扭曲所获取图像的其他偏差。为此,使用焦距为 50 毫米的尼康 D810 数码相机在摄影测量测试场区域“Franklin Mills Mall”进行相机校准。该场地覆盖了多个飞行高度,分别产生 15 和 30 厘米 GSD 的图像。飞行了两个垂直摄影测量飞行带,具有高端搭接和侧搭接。测试场区域拥有大约 25 个目标控制和检查点,这些点的测量精度为 2 厘米或更高。使用 PIX4Dmapper(专为从无人机或地面获取的图像而创建的软件包)对上述图像进行自动空中三角测量。导出图像观测结果(ASCII),并使用汉诺威莱布尼茨大学程序系统 BLUH 进行相应的束流区域调整,该系统能够通过附加参数(十二个标准加上不同失真模式的中型非度量数字相机)进行自我校准。调查中使用了不同数量和分布的地面控制点 (GCP) 和检查点 (ChkPts)。本文介绍了结果。
摄像头使车辆或网络系统能够收集环境数据,然后处理这些数据并采取纠正措施,通常是自动的。由于摄像头直接将安全辅助或自动驾驶汽车与周围环境联系起来,驾驶员和乘客的安全极大地依赖于摄像头系统的性能。前置和后置摄像头必须能够支持更高的处理能力,以便在交叉交通和碰撞检测应用中实现快速响应。需要准确地组合多个环视摄像头图像,以可靠地支持自适应巡航控制和盲点检测等功能。这些摄像头的性能水平决定了系统可以检测到多远的潜在危险,在系统检测到之前危险可以有多小或多隐蔽,以及信息可以多快传输到汽车的中央电子控制单元 (ECU)。在考虑如何实现驾驶辅助摄像头的高性能水平时,一个重要因素是摄像头模块本身可能出现的极端温度。众所周知,在无法容忍高错误率的应用中,过热或过冷的温度会对图像质量和组件操作产生负面影响。因此,随着车辆越来越依赖摄像头的安全功能,确保摄像头可靠运行以保护所有驾驶员和乘客比以往任何时候都更加重要。