摘要:形成稳定的电化学相互作用,包括固体电解质间相(SEI)和阴极电解质相间(CEI)对于开发高性能碱金属电池至关重要。SEI/CEI的稳定性主要取决于其化学和结构。当前对SEI/CEI设计的研究主要集中于通过调节电解质配方来调节其化学。在这项工作中,我们展示了SEI/CEI的化学和结构都可以通过温度调制的形成策略轻松调节。具体而言,使用加热条件下的预充电来调节电解质分解反应的类型和动力学,然后在低温存储下冷冻,以控制电极界面上分解产物的沉积行为。研究表明,高温预充电会影响LI+的配位结构并加速分解反应动力学,从而导致大量阴离子分解。随后的低温存储迅速降低了在高温下产生的分解产物的溶解度,从而促进了两个电极对不溶性产物的沉积,从而导致密集且稳定的SEI/CEI。强大的SEI/CEI实现了中等浓度的基于以太电解质的4.5 V LI || NCM811单元的稳定循环,
b'Abstract:使用高能量阴极在锂金属电池中极大地忽略了通用阴极的交叉,例如使用高能量阴极,从而导致严重的容量降解并引起严重的安全问题。在此,开发了由多功能活性位点组成的多功能和薄(25 \ XCE \ XBCM)中间层,以同时调节LI沉积过程并抑制阴极交叉。即使在10 MACM 2的高电流密度下,AS诱导的双梯度固相之间的相互作用结合了丰富的岩石嗜性位点也能稳定稳定的LI剥离/电镀工艺。此外,X射线光电子光谱和同步子X射线实验表明,富含N的框架和COZN双重活性位点可以有效地减轻不希望的阴极交叉,因此显着最大程度地减少了Li Li腐蚀。因此,使用各种高能阴极材料(包括LINI 0.7 MN 0.2 CO 0.1 O 2,LI 1.2 CO 0.1 Mn 0.55 Ni 0.15 O 2)组装的锂金属细胞,硫表现出明显改善的循环稳定性,并具有高阴极载荷。