必须在不迟于预定停靠或干泊期的前 20% 之前提交。在预定停靠或干泊期的前 20% 之后提交报告的任何例外情况都必须得到主管的批准。干船坞或干泊位相关报告包含读数(最终读数、厚度等)、间隙、校准、测试结果或海军船艇和艇筏进水前、出坞前或浮动前必须完成的工作的其他此类数据,必须在记录数据后一天内提交给监督人员,但不得晚于海军船艇和艇筏进水前、出坞前或浮动前 4 天(以先到者为准)。3.2.6 报告必须包含以下信息:
检查报告必须在计划停靠或干泊期的前 20% 之前提交。在计划停靠或干泊期的前 20% 之后提交报告的任何例外情况都必须得到主管的批准。干船坞或干泊位相关报告包含读数(最终读数、厚度等)、间隙、校准、测试结果或海军船艇和艇筏进水前、出坞前或浮动前必须完成的工作的其他此类数据,必须在记录数据后一天内提交给监督人员,但不得晚于海军船艇和艇筏进水前、出坞前或浮动前 4 天(以先到者为准)。3.2.6 报告必须包含以下信息:
软木是一种天然的无定形材料,其泊松比接近零的比率是密封玻璃瓶的无处不在。它是一种各向异性,横向各向同性,复合材料,几乎无法缩放。在这里,我们提出了一种新的各向同性和可重复使用的软木状的超材料,该类似于混合桁架材料,以显示出接近零的各向同性泊松的比例。优化是使用椭圆基函数神经网络辅助的多物镜遗传算法进行的,并与有限元仿真相结合。最佳的微结构超材料,由晶格常数为300 µm的两光片光刻制造,几乎各向同性泊松的比例在所有方向上都小于0.08。它可以恢复96。压缩测试后其原始形状的6%超过20%的应变。
M.TECH.(采矿工程)第一部分第一学期 MN5101:运筹学(3 个学分)运筹学简介基本概念。线性规划单纯形法、对偶问题和后最优性分析。动态规划概念、递归方程方法、计算程序、正向和反向计算以及维数问题。网络分析网络表示、关键路径计算、项目调度中的概率和成本考虑、时间表的构建和资源平衡。库存模型定义、确定性和概率模型。排队论基本概念、到达和离开的公理推导、泊松队列的分布、泊松排队模型、非泊松排队模型、具有服务优先级的排队模型。非线性规划无约束外部问题、约束外部问题、规划 - 可分离、二次、随机和几何。 MN5102:应用岩石力学(3 学分)地应力地壳中的地应力。地应力测定方法。矿井开口周围的应力各种形状的矿井开口周围的应力分布。矿井开口和矿柱的设计支架设计岩石锚杆、锚索、顶板封堵、喷射混凝土、房柱支撑和长壁工作面。采空区支撑崩落和填充力学。岩爆和冲击机制、预测和控制。沉降机制、预测和控制。竖井柱设计。
有关完整的数字健康策略,请访问nbmphn.com.au/publications Wentworth Healthcare Limited(ABN 88 155 904 975)的尼泊恩蓝山(Nepean Blue Mountains)PHN提供商。
众所周知,折纸超材料会根据其折叠状态显示出高度可调的泊松比值。关于可部署折纸镶嵌中的泊松效应的大部分研究都局限于理论和模拟。要通过实验实现折纸超材料中所需的泊松效应,需要特别注意边界条件,以实现可部署的非线性变形,从而实现可调性。在这项工作中,我们提出了一种新颖的实验装置,适用于研究在施加方向和横向同时发生变形的 2D 折纸镶嵌中的泊松效应。该装置包括一个夹持机构(我们称之为圣维南夹具),以消除单轴测试实验中的圣维南端部效应。使用此装置,我们对 Morph 折纸图案进行泊松比测量,该图案的配置空间结合了 Miura-ori 和 Eggbox 母图案的特点。我们通过实验观察到了 Morph 图案的泊松比符号切换能力,以及它通过拓扑变换显示泊松比的完全正值或完全负值的能力。为了证明新装置的多功能性,我们还对标准 Miura-ori 和标准 Eggbox 图案进行了实验。我们的结果表明,在折纸超材料中泊松比测量及其可调性方面,理论、模拟和实验是一致的。所提出的实验技术可用于研究折纸超材料在静态和动态状态下的其他可调特性,例如有限应变泊松比、弹性热膨胀和波传播控制。
原理:代谢的协同重编程主导神经母细胞瘤 (NB) 的进展。基于阐明代谢重编程的分子机制,开发一种具有分层指导的 NB 治疗选择的个性化风险预测方法具有重要的临床意义。方法:利用基于机器学习的多步骤程序,在单细胞和代谢物通量维度上阐明代谢重编程驱动的 NB 恶性进展的协同机制。随后,开发了一种有前景的代谢重编程相关预后特征 (MPS) 和基于 MPS 分层的个性化治疗方法,并使用临床前模型进一步独立验证。结果:MPS 鉴定的 MPS-I NB 表现出比 MPS-II 对应物明显更高的代谢重编程活性。 MPS 在预测预后方面比目前的临床特征 [AUC:0.915 vs. 0.657(MYCN)、0.713(INSS 分期)和 0.808(INRG 分层)] 表现出更高的准确性。AZD7762 和依托泊苷分别被确定为针对 MPS-I 和 II NB 的有效治疗药物。后续生物学测试表明,AZD7762 显著抑制 MPS-I NB 细胞的生长、迁移和侵袭,且效果优于 MPS-II 细胞。相反,依托泊苷对 MPS-II NB 细胞的治疗效果更好。更令人鼓舞的是,AZD7762 和依托泊苷分别显着抑制了 MPS-I 和 MPS-II 样本中的体内皮下肿瘤形成、增殖和肺转移;从而延长了荷瘤小鼠的生存期。从机制上看,AZD7762 和依托泊苷分别通过线粒体依赖性途径诱导 MPS-I 和 MPS-II 细胞凋亡;而 MPS-I NB 通过依赖谷氨酸代谢和乙酰辅酶 A 抵抗依托泊苷诱导的细胞凋亡。MPS-I NB 进展受到多种代谢重编程驱动因素的推动,包括多药耐药性、免疫抑制和促肿瘤炎症微环境。从免疫学上看,MPS-I NB 通过 MIF 和 THBS 信号通路抑制免疫细胞。代谢方面,重编程的谷氨酸代谢、三羧酸循环、尿素循环等显著支持了 MPS-I NB 细胞的恶性增殖。此外,MPS-I NB 细胞表现出独特的促肿瘤发育谱系和自我通讯模式,这表现为随着发育和自我通讯而激活的致癌信号通路增强。结论:本研究深入了解了代谢重编程介导的 NB 恶性进展的分子机制。它还为开发以新的精确风险预测方法为指导的靶向药物提供了启示,这可能有助于显著改善 NB 的治疗策略。
多种抗癌治疗药物的皮下 (SC) 制剂的出现提高了实体肿瘤以及血液系统恶性肿瘤(包括多发性骨髓瘤)患者的治疗安全性和便利性。1-3 与静脉 (IV) 给药相比,患者和医疗保健提供者通常更喜欢通过 SC 给药来给药肿瘤药物,因为它可以提高患者的舒适度和满意度并减少医疗资源的利用率。2,4-6 为了提高给药的便利性,开发了抗 CD38 抗体伊沙妥昔单抗 (Isa) 的 SC 制剂。7 Isa 获准用于复发/难治性多发性骨髓瘤 (RRMM) 患者,在接受过 ≥2 次先前治疗后与泊马度胺-地塞米松 (Isa-Pd) 联合使用,在接受过一次先前治疗后与卡非佐米-地塞米松联合使用。8-12
摘要 耳念珠菌是一种近期在世界范围内出现的耐多药人类真菌病原体。它可导致人类危及生命的播散性感染,死亡率高达 50%。其耐多药性和致病特性背后的分子机制尚不清楚。目前用于耳念珠菌基因组编辑的方法很少,所有这些方法都依赖于限制可进行的修改数量的选择标记。在这里,我们介绍了一种无标记的 CRISPR/Cas9 介导的耳念珠菌基因组编辑系统。利用该系统,我们成功删除了感兴趣的基因,然后在所有五个耳念珠菌进化枝的分离株中的天然位置重建它们。该系统还使我们能够引入精确的基因组编辑来创建翻译融合和单点突变。使用 Cas5 作为此系统的测试案例,我们发现 Cas5 在白色念珠菌和耳念珠菌之间的卡泊芬净反应中起着保守作用。总体而言,开发一种可在耳念珠菌中精确且简便地进行基因组编辑的系统,该系统可以以高通量的方式进行编辑,这是提高我们对这种重要的人类真菌病原体的了解的重要一步。
预定义的治疗方案节省了员工时间 为了选择正确的治疗方法,Space 提供了多种 TCI 算法(丙泊酚:Schnider、Marsh;瑞芬太尼:Minto)以及用户配置文件(血浆靶向/效应位靶向)。