简介 多年来,尼日利亚一直面临移民和人才流失问题,并随之产生经济和发展后果。大量尼日利亚公民继续有条不紊地移居国外。令人担忧的是,大量受过高等教育和熟练的专业人士在发达经济体找到了避风港;这种情况通常被称为人才流失。人才流失是指拥有一些技术技能和专业知识以及各行各业的专业人士(医生、护士、工程师、技术人员、大学讲师、工程师、计算机科学家、企业经理等)移居到本国以外的国家,以获得更好的服务条件,并认为可以提高自己的工作效率。现有证据表明,除南非外,大多数尼日利亚移民的目的地国在北美和欧洲,而少数移民在一些亚洲国家。有证据表明,根据该国 2017 年的负净移民数据(-300000)(见世界银行,2019 年),尼日利亚移民人数超过移民人数。文献还显示,在国外行医的尼日利亚医生数量超过国内医生,其中许多人在尼日利亚接受过培训,因此该国目前面临严重的医务人员短缺问题。据报道,约有 1700 万尼日利亚人生活在海外。这可能会对该国的可持续发展产生负面影响。尼日利亚移民和人才流失的原因文献中,造成移民和人才流失的几个因素分为推拉因素。推拉因素是那些使移民离开祖国前往另一个国家的不利条件,而拉动因素是那些吸引移民前往目的地国的有利条件。这些因素可能是经济、政治、环境等。大多数这些因素解释了为什么人们大量移民出尼日利亚。其中一些因素包括:基础设施差,如电力供应不稳定,这阻碍了商业活动,导致许多小规模企业倒闭,而一些公司已从该国迁往邻国。不安全率高;由恐怖分子、土匪、牧民和绑架者的活动造成。这些因素不仅导致受灾地区居民迁徙,还导致其他地区居民迁往国外。贫困加剧是加剧尼日利亚移民和人才流失问题的另一个推动因素。目前,尼日利亚被称为世界贫困中心;因此,人们迁往世界其他地方以摆脱贫困的困扰。工业化程度低限制了经济创造足够就业机会的能力,因此,人们为了寻找工作而迁往国外。糟糕的治理和领导失败;多年来,这一直是该国发展的祸根;因此,人们更愿意移民到拥有良好领导的经济体,这使得该系统能够正常运转。糟糕的薪酬待遇是导致人们离开尼日利亚前往其他国家的另一个问题。尼日利亚是薪酬待遇非常差的国家之一。新的最低工资为 30,000 奈拉(82.65 美元),不足以支付
感知是在大脑中形成图形-地面分割和以物体为中心的表征之后产生的。研究表明,注意力在忽视中起着关键作用,研究表明颞顶交界处受损的患者无法将注意力从同侧空间转移到对侧空间(Friedrich、Egly、Rafal & Beck,1998;Posner、Walker、Friedrich & Rafal,1984),即使对于出现在同侧半视野内的目标也是如此(Ladavas,1990;Ladavas、Del Pesce & Provinciali,1989)。与对侧注意力受损相比,对同侧空间的注意力实际上可能会增强(D'Erme、Robertson、Bartolomeo、Daniele & Gainotti,1992;Ladavas,1990;Ladavas、Petronio & Umilta,1990)。这可能是由于右半球受损后优势左半球的抑制作用减弱所致(Cohen、Romero、Servan-Schreiber & Farah,1994;Kinsbourne,1977、1993)。使用经颅磁刺激 (TMS) 暂时扰乱右顶叶皮质处理的研究也为这种半球竞争解释忽视提供了证据(Blankenburg et al.,2008;Seyal、Ro & Rafal,1995;Szczepanski & Kastner,2013)。或者,如果右半球负责注意空间的两个半部,而左半球只负责注意空间的右侧,那么右半球损伤更有可能导致忽视(Heilman & Valenstein,1979;Heilman & Van Den Abell,1979,1980)。此外,右半球损伤后,同侧半球也可能出现注意力缺陷(Vuilleumier & Rafal,2000),忽视还可能出现时间注意力缺陷(Husain、Shapiro、Martin & Kennard,1997)。这些关于忽视的半球不对称解释表明,感知处理可能在大脑损伤同一侧(同侧)的视觉空间中受到影响,这与该领域的普遍观点(同侧空间不受影响)相反。为了验证这一想法,在本研究中,我们使用元对比掩蔽范式评估了忽视患者对侧和同侧空间的空间和时间处理差异,其中短暂呈现的目标刺激在元对比掩蔽之前以不同的延迟呈现。在神经健康的受试者中,当目标刺激在周围元对比掩蔽之前约 30 毫秒的相同位置呈现时,目标刺激经常被错过,并且只感知到元对比掩蔽(Breitmeyer,1984;Breitmeyer & Ogmen,2000;Ogmen,Breitmeyer,& Melvin,2003)。有人假设这种掩蔽是由于视觉皮层中掩蔽的反馈处理中断了目标刺激的前馈处理(Enns,2004;Ro,Breitmeyer,Burton,Singhal,& Lane,2003)。重要的是,研究之前已经表明,正常受试者的元对比掩蔽的幅度和持续时间受到内源性注意力的影响(Boyer & Ro,2007;Ramachandran & Cobb,1995)。通过操纵这些目标和掩蔽刺激在空间中的位置和时间中呈现,我们评估了忽视如何影响两名忽视患者对侧和同侧半场的元对比掩蔽。为了进行比较,我们还在一组神经健康、年龄匹配的受试者中使用相同的范例测量了元对比掩蔽的空间和时间范围
研究文章:新研究| Sensory and Motor Systems Post-Movement Beta Synchronization Induced by Speed Effects IHI from Ipsilateral to Contralateral Motor Cortex https://doi.org/10.1523/ENEURO.0370-24.2025 Received: 26 August 2024 Revised: 3 February 2025 Accepted: 21 February 2025 Copyright © 2025 Zhang et al.这是根据Creative Commons Attribution 4.0国际许可条款分发的开放访问文章,只要将原始工作正确归因于任何媒介,它允许在任何媒介中进行无限制的使用,分发和复制。
当您在空气置换移液器上设置体积时,活塞会调节气垫的体积,进而决定要吸入的液体体积。如果样品体积要与所选体积完全对应,则活塞必须是完美的。这就是为什么 Pipetman 活塞要单独检查以确保没有瑕疵的原因。它们甚至会单独清洁以确保没有灰尘颗粒。
圣保罗大学,天文学研究所,地球物理学与大气科学,Matão街1226,邮政编码05508-090,圣保罗,巴西B巴西Brazilian物理学研究中心,Xavier Sigaud Street 150博士,ZIP Code 22290-180,Rio Deee for deeec,deeca,daine for daine for deee for dae janeir,daane, Covas Highway,Lot J2,Block J Itaguai工业区,邮政编码23810-000,Itaguai,RJ,巴西D研究所,圣保罗大学,Matão街1371年,邮政编码05508-090 IP Code 91501-970,Porto Alegre,RS,Brazil f地址拉塞雷纳大学研究与发展中心,Avenida Juan Cisternas 1200,拉塞雷纳,智利 g SIGMA 空间科学与技术公司,CL-1700000,拉塞雷纳,智利 h 波兰科学院尼古拉·哥白尼天文中心,ul。 Bartycka 18, 00-716,华沙,波兰 i 帕拉伊巴河谷大学,Shishima Hifumi Ave. 2911,邮编 12244-000,圣若泽杜斯坎普斯,SP,巴西 j 马林加州立大学,计算机科学研究生课程,Colombo Ave. 5790,邮编 87020-900,马林加,PR,巴西 k 马林加州立大学,生产工程研究生课程,Colombo Ave. 5790,邮编 87020-900,马林加,PR,巴西 l 巴拉那联邦大学,Jandaia do Sul 校区,Doutor João Maximiano Street 426,邮编 86900-900,Jandaia do Sul,PR,巴西 m 雅典国家天文台天文、天体物理、空间应用和遥感研究所,GR 15236 Penteli,希腊n 安达卢西亚天体物理研究所 - CSIC,Glorieta de la Astronomía s/n,E-18008 格拉纳达,西班牙 o 圣卡塔琳娜联邦大学物理系,CEP 88040-900,弗洛里亚诺波利斯,SC,巴西 p NOAO。 950 North Cherry Ave. Tucson, AZ 85719,美国 q GMTO Corporation,465 N. Halstead Street, Suite 250,Pasadena, CA 91107,美国
描述 IRS21867 是一款高压、高速功率 MOSFET 和 IGBT 驱动器,具有独立的高侧和低侧参考输出通道。专有的 HVIC 和闩锁免疫 CMOS 技术可实现坚固的单片结构。低 VCC 操作允许在电池供电应用中使用。逻辑输入与标准 CMOS 或 LSTTL 输出兼容,低至 3.3 V 逻辑。输出驱动器具有高脉冲电流缓冲级,旨在最大限度地减少驱动器交叉传导。浮动通道可用于驱动高侧配置中的 N 通道功率 MOSFET 或 IGBT,工作电压高达 600V。
晚发型或青少年特发性脊柱侧弯 (AIS) 是一种三维脊柱异常,在 10 至 16 岁儿童中发病率为 1–3%[1–4]。由于 AIS 的病因不明[5],干预措施针对的是解剖结构畸形,而不是畸形的根本原因。最近的证据表明,前庭系统可能在 AIS 的病因中发挥作用[6–9],因为它会影响下丘脑、小脑和前庭脊髓通路[10]。前庭系统由耳石器和三个正交半规管 (SCC) 组成 [11]。每个半规管都与对侧的半规管协同工作。角加速度会导致 SCC 内的毛细胞偏转,从而提供有关运动方向和强度的传入信号 [12, 13]。这些信号共同有助于平衡和姿势控制。角加速度敏感性与管道形态直接相关 [14],这表明任何结构异常都可能导致下游效应,包括平衡受损和姿势肌肉活动受损。由于 SCC 在出生时具有固定的大小和形状 [10, 15, 16],异常可能通过激活负责躯干支撑的棘旁肌在 AIS 的发病机制中起早期致病或促成作用 [3]。先前的研究发现,与正常对照组相比,AIS 患者存在前庭形态异常 [10, 17]。然而,关于 SCC 管道形态在 AIS 中的作用存在争议 [18, 19]。我们的目标是建立一种新颖的半规管成像方法,以评估鳞状细胞癌和 AIS 解剖变异之间的关联。我们测试了 AIS 患者的鳞状细胞癌几何形状的左右差异是否与对照组相比被夸大。