ITaP 实用策略 – 学习谈话(第 2 阶段)荒岛阅读:Knight,R.(2020 年)“课堂谈话。面向探究型教师的循证教学”,Critical Publishing。圣奥尔本斯。4 个目标,以实现高效
含摘要黄素单加氧酶(FMO)是一种保守的异种生物酶家族,包括多种寿命干预措施,包括线虫和小鼠模型。以前的工作支持秀丽隐杆线虫FMO-2通过重新布线内源代谢来促进寿命,抗压力和健康状态。但是,有五个秀丽隐杆线虫FMO和五个哺乳动物FMO,尚不清楚促进长寿和健康益处是否是该基因家族的保守作用。在这里,我们报告说,秀丽隐杆线虫FMO-4的表达促进了饮食限制和MTOR抑制下游的寿命延伸和偏花应力抗性。我们发现,仅皮下注射中FMO-4的过表达就足以容纳这些好处,并且该表达显着修饰了转录组。通过分析基因表达的变化,我们发现与钙信号相关的基因被显着改变了FMO-4的下游。强调了钙稳态在该途径中的重要性,FMO-4过表达的动物对Thapsigargin敏感,Thapsigargin是一种ER胁迫,可抑制从细胞质到ER腔的钙通量。这种钙/ FMO-4的相互作用通过数据巩固,表明用小分子或遗传学调节细胞内钙可以改变FMO-4的表达和/或与FMO-4相互作用,以影响寿命和抗压力。进一步的分析支持一条途径,其中FMO-4调节激活转录因子-6(ATF-6)下游的钙稳态(ATF-6),其敲低引起并需要FMO-4表达。一起,我们的数据将FMO-4识别为延长的基因,其作用与已知的寿命途径和钙稳态相互作用。
动态电刺激促进了HIPSC-CM分化和功能抽象的人类诱导的多能干细胞分化的心肌细胞(HIPSC-CMS)具有很大的潜力,可以解决心血管疾病,但由于其功能不成熟而受阻。在心脏病发生过程中测得的复杂电势表明,外源性电刺激在改善心脏分化和功能方面的潜力。在此,我们创建,验证和实施低成本的电刺激装置,以刺激心脏分化期间的hipsc。值得注意的是,我们的开源设备可以生成复杂的电刺激状态,这些刺激状态可能会随着时间的流逝而变化和脉冲持续时间。我们的结果表明,分化过程中的动态刺激提高了心脏分化效率,钙处理和流速性,并促进了与静态刺激或没有刺激控制的显着转录组途径富集。动态刺激可以通过肌节发育增强电化学耦合并促进心源途径的表达。我们预计可以生成更复杂的动态电刺激方案,以进一步优化HIPSC-CM功能和成熟度。简介
shank3相关的蛋白网络在磷酸化和去磷酸化的蛋白中显着富集。shank3基因在染色体22q13.3上的单倍不足通常会导致Phelan-McDermid综合征(PMS),这是一种遗传定义的自闭症形式,在运动行为,感觉处理,语言,语言和认知功能中存在严重缺陷。我们在shank3杂合小鼠中确定了多种疾病的表型,并表明JB2挽救了突触功能和可塑性,学习和记忆,超声声音和运动功能的缺陷;它还标准化了神经元兴奋性和癫痫敏感性。值得注意的是,JB2挽救了听觉诱发的响应潜伏期,α峰值频率和稳态脑电图响应的缺陷,该响应的测量值直接转化为人类受试者。这些数据表明JB2是神经可塑性的有效调节剂,具有治疗PMS和ASD的治疗潜力。
对于非结构的磁场方向成为创建高性能多功能纳米复合材料的可行方法,开发一种易于实现并可以诱导远距离统一的纳米结构对齐的方法至关重要。要克服这一挑战,灵感来自低场核磁共振(NMR)技术,一种高度均匀,高的强度和紧凑的磁场纳米结构方向方法,用于使用HALBACH阵列,用于整个时间。通过考虑高度定向的正交形态中的电 - 热和抗菌特性,展示了用于石墨烯聚合物复合材料的应用。研究的石墨烯纳米复合材料中诱导的高水平的各向异性可以通过:1)与其随机定向的对应物相比,记录了多达四十年的高电导率,而后者的浓度则显示出最小的改善,与未效率的聚合物相比最小; 2)超过1200%的热导率提高了3)较低纤维含量的基准水平水平的抗菌表面,并且纳米填充剂的任意方向增加了多功能性。总体而言,新方法及其变化可以为基于石墨烯和其他类型的填充剂的几乎所有主要的纳米复合应用程序定制纳米结构和性能的新视野。
卤素和渗透剂酵母菌dealomyces Hansenii具有很高的细胞工厂应用潜力,因为它抵抗了严峻的环境因素以及与广泛的底物范围的兼容性。但是,目前可用的遗传技术不允许汉斯内尼作为细胞工厂的全部潜力。此外,大多数当前可用的工具都依赖于不适合野生型原型营养菌株的补充营养标记。此外,当需要精确的基因靶向时,首选的非同源末端连接(NHEJ)DNA损伤修复机制会带来进一步的挑战。在这项研究中,我们提出了一种新型的基于质粒的CRISPR CUG /CAS9方法,用于易于有效的基因编辑。我们的工具集设计基于主要标记,并促进了表达Cas9和单个或多个单个指南RNA(SGRNA)的矢量的快速组装,这些载体即使在原养菌株中也为多路复用基因工程提供了可能性。此外,我们已经构建了缺乏的nhej hansenii,使我们的crispr cug /cas9工具能够支持点突变和单个 /双基因缺失的高效引入。重要的是,我们还证明了90-NT单链DNA寡核苷酸足以直接修复SGRNA-CAS9诱导的DNA断裂,从而导致精确的编辑达到100%效率。总而言之,本研究中开发的工具将在D. Hansenii中大大推进基础和应用研究。此外,我们设想我们的工具可以迅速适应其他非惯性酵母菌物种的基因编辑,包括属于CUG的酵母菌物种。
2. Tripodi A、Cohen H、Devreese KMJ。抗凝患者中的狼疮抗凝剂检测。狼疮科学和标准化委员会指南
幼虫在整个海洋中都很丰富。幼虫在研究中被忽略了,因为它们很难进行,并且被认为在生物地球化学周期和食物奖中并不重要。我们综合证据,表明它们的独特生物学使幼虫可以将更多的碳转移到更高的营养水平,而深入海洋,而不是通常所欣赏的。幼虫在人类世可能变得更加重要,因为他们吃的小浮游植物被预计在气候变化下会更加普遍,从而减轻了预计的预计未来在海洋生产力和薄片中的下降。我们确定了批判性知识差距,并认为应将幼虫纳入生态系统评估和生物地球化学模型中,以改善对未来海洋的预测。
胸腺细胞在流式细胞仪缓冲液(PBS中的2%FBS)中表面染色30分钟。样品,并在LSRII流式细胞仪(Becton Dickinson)上获取数据。使用FlowJo软件(Becton Dickinson)分析数据。表面抗体是CD4(克隆GK1.5,BD Biosciences),CD8(克隆53-6.7,Ebiosciences),TCRβ(克隆H57-597,Ebiiosciences)和CCR7(克隆H57-597,CCR7(Clone 4B12,Ebiosciences,Ebiosciences)。细胞使用活/死水荧光反应性染料(分子探针与生命技术,L34963)染色。对于γH2AX实验,根据制造商的建议,将细胞固定并使用FOXP3/转录因子固定试剂盒(EBISoscience 00-5521)进行通透。细胞对γH2AX(抗H2AX(PS139),BD Biosciences,BDB562377)的细胞内染色30分钟,在冰川化缓冲液中冰上进行30分钟,洗涤2倍,并获得上述收购。
抽象目标巨噬细胞子集被T细胞激活,越来越多地被认为在类风湿关节炎(RA)发病机理中起着核心作用。Janus激酶(JAK)抑制剂在RA中已证明有益的临床作用。在这项研究中,我们研究了JAK抑制剂对细胞因子激活T(TCK)细胞产生的影响以及TCK细胞/巨噬细胞相互作用诱导的细胞因子和趋化因子的产生。方法CD14 +单核细胞和CD4 + T细胞从健康供体的Buffy毛皮中纯化从外周血单核细胞中纯化。作为代表性的JAK抑制剂,tofacitinib或ruxolitinib。先前验证的方案分别用于从单核细胞和CD4 + T细胞中生成巨噬细胞和TCK细胞。细胞因子和趋化因子,包括TNF,IL-6,IL-15,IL-RA,IL-10,MIP1α,MIP1β和IP10。结果JAK抑制剂阻止了细胞因子诱导的TCK细胞成熟,并降低了促炎性细胞因子TNF,IL-6,IL-15,IL-15,IL-1RA和趋化因子IL-10,MIP1α,MIP1α,MIP1β,IP10,由TCK细胞通过TCK细胞通过TCK Cell-inded Moclated Moclated Moclophages(Vitro)(p <0.0)。结论我们的发现表明,JAK抑制会破坏T细胞诱导的巨噬细胞激活,并减少下游促炎细胞因子和趋化因子反应,这表明抑制T细胞巨噬细胞相互作用有助于JAK抑制剂的治疗作用。
