。cc-by-nc-nd 4.0国际许可证。根据作者/资助者,它是根据预印本提供的(未经同行评审的认证),他已授予Biorxiv的许可证,以在2025年1月28日发布的此版本中在版权所有者中显示预印本。 https://doi.org/10.1101/2025.01.17.633522 doi:Biorxiv Preprint
恢复缺乏减数分裂辅酶的染色体基因座中的减数分裂重组(Schmidt等,2020; R r€Onspies等,2022)。相比之下,多个或“丰富”的重排通常会导致减少减数分裂染色体的分离和非整倍型配子,从而损害了植物的生存能力(Heng,2019年)。许多核型重排可能会导致密切相关的加入之间的生殖屏障,从而导致物种的早期步骤(Lucek等,2023)。这些“丰富”的染色体重排通常由涉及影响一个或多个染色体的几十个断点(甚至数百个)的重排的复杂组合,从而导致结构和/或数值核型变化(Schubert,2024)。在“ Chromoana-Genesis”事件期间出现了多个同时重排,这是由“灾难性”现象引起的,例如DNA复制期间的压力,DNA修复缺陷,暴露于遗传毒性剂(Guo等人,2023年,2023年)或异常的Centromere Centromere行为(目前的审查的重点)。大多数受许多重排影响的生物或细胞可能灭亡。然而,具有可行的新型核型的一小部分可能会持续存在,从而导致基因流势和潜在触发物种(Lucek等,2023)。观察到密切相关的物种在其核型排列中可能会有很大差异,这支持了这一假设。染色体。(2023),在Hoang等人中看到了一些假定的例子。(2022)和Tan等。(2023)。(2024)和Martin等。最近在Lucek等人中回顾了核型变化的核型变化。(2023)在Ferguson等人中看到的植物中有一些最新推定的例子。(2020)。
该团队的量子冰箱由两个量子位组成:一个“热”量子,该量子与保持在5 k左右的热源连接和一个“冷” Qutrit,类似于量子,但具有三个量化的能量水平,该量子与低温器最冷的部分相连。热量子量子和冷qutrit的能量差距被仔细调整为第三个“加工”量子的量子(参与计算的量子)的量子,以实现它们之间的热量传递。如果加工量子盘会激发,其能量将与热量量子的量子量子结合起来,将冷Qutrit激发到其最高能级。作为这种能量交换的一部分,处理量子置量已重置为基础状态,以开始进行新的计算。激发QUTRIT的能量也将其排入低温恒温器,将其重置为最低的能级。
研究了 Ti 3 SiC 2 基欧姆接触在 p 型 4H-SiC (0001) 4° 偏心衬底上的高温稳定性和可靠性。该接触由高温(900°C 至 1200°C)退火的 Ti 100-x Al x 合金生长而成。室温和高温(高达 600°C)下的特定接触电阻 (SCR) 在 10 -4 -10 -5 Ω.cm 2 范围内。计算出该组样品的肖特基势垒高度为 0.71 至 0.85 eV。在 600°C 下老化 1500 小时后,当 Al 含量 x < 80 at% 时,SCR 非常稳定。这与这些接触的化学和物理稳定性有关,其中老化后 4H-SiC/Ti 3 SiC 2 界面上的残余应力减小,因此 Ti 3 SiC 2 相得以保留。然而,在 x = 80 at% 的情况下,Ti 3 SiC 2 相消失,长时间老化后接触不再具有欧姆性。所得结果表明,Ti 3 SiC 2 /4H- SiC 系统在高温下具有热力学稳定性,因此可以成为高功率和高温电子应用的良好候选材料,具有很高的潜力。
扩散过程渗透到人工智能的众多领域,抽象地模拟了网络中信息交换的动态,这些信息交换通常是易变的。一个核心问题是信息在网络中保留多长时间,即生存时间。对于常见的 SIS 过程,对于各种参数,预期生存时间至少是星图上网络规模的超多项式。相比之下,引入临时免疫的 SIRS 过程的预期生存时间在星图上始终最多为多项式,并且仅对于更密集的网络(例如扩展器)才为超多项式。然而,这一结果依赖于完全的临时免疫,而这在实际过程中并不总是存在的。我们引入了 cSIRS 过程,它结合了逐渐下降的免疫力,使得每个时间点的预期免疫力与 SIRS 过程的预期免疫力相同。我们在星图和扩展器上严格研究了 cSIRS 过程的生存时间,并表明其预期生存时间与没有免疫力的 SIS 过程非常相似。这表明,免疫力逐渐下降就等于没有免疫力。
。cc-by-nd 4.0国际许可证可永久提供。是作者/资助者,他已授予Medrxiv的许可证,以显示预印本(未通过同行评审证明)预印版本的版权所有者此版本于2025年1月19日发布。 https://doi.org/10.1101/2025.01.18.25320756 doi:medrxiv preprint
。cc-by-nc-nd 4.0国际许可证。是根据作者/资助者提供的预印本(未经同行评审认证)提供的,他已授予Biorxiv的许可证,以在2025年1月20日发布的此版本中显示此版本的版权持有人。 https://doi.org/10.1101/2025.01.17.633522 doi:Biorxiv Preprint
Rubrik(NYSE:RBRK)正在执行确保世界数据的任务。使用零信任数据安全™,我们帮助组织对网络攻击,恶意内部人员和操作中断实现业务弹性。Rubrik Security Cloud,由机器学习提供动力,可在企业,云和SaaS应用程序中确保数据。我们帮助组织维护数据完整性,提供可承受不利条件的数据可用性,不断监控数据风险和威胁,并在攻击基础架构时使用其数据恢复业务。
[2023年11月17日收到; 2024年1月6日修订; [2024年1月9日接受]摘要:健康与长寿是人类的梦想和医学界的主要领域。裸痣大鼠(NMR)是一种独特的鼠动物,寿命极长(超过38年),几乎没有衰老的迹象,例如生殖下降,神经退化性疾病和癌症。他们为我们提供了预防与年龄有关的疾病的宝贵观点。本综述系统地总结了衰老抗性中裸鼠大鼠不同系统的特征,并进一步利用了衰老抗性的机制形成了基因组,端粒,蛋白质回收,代谢和氧化应激态度。作为一种与人类相似的物种,不能排除在合理的有效性,安全性和道德评估之后,将在医疗转型中发展出裸mole大鼠的主要基因,以实现人类健康和寿命的梦想。关键词:裸露的痣老鼠,衰老,ROS,基因组,新陈代谢寿命和健康应该是所有人的主要目标。慢性疾病的发生通常与衰老[1]呈正相关,例如癌症,心血管疾病和神经变性[2-4]。在模型动物中进行了许多研究,例如caenorhabditis elemants和Lab小鼠,例如CGAS/STING途径和MTOR途径[5,6]。这些动物在药物评估和机理研究方面非常出色,但是在提供新的观点以与年龄相关的疾病相抵抗与年龄相关的疾病的局限性。裸mole大鼠(NMR)是一种独特的鼠动物,寿命极长(超过38年)[6],揭示了诸如生殖下降[7],阿尔茨海默氏病[8]和癌症[9]等衰老的迹象。因此,必须找到有效的基因,环境和药物干预措施来延迟衰老,改善功能损失并减少
摘要欺诈活动日益增长的复杂性挑战了依赖静态规则和历史数据的传统欺诈检测系统。欺诈者不断发展其技术,需要更智能,实时的解决方案,能够学习和适应。强化学习(RL)是机器学习的一个分支,已成为一种改变游戏规则的欺诈方法。rl系统通过试用和错误的学习不断优化检测策略,并适应新的欺诈模式。本文探讨了RL如何通过实现自适应决策,实时异常识别和积极的欺诈预防来保持欺诈检测智能和高效。它重点介绍了RL处理不断发展的欺诈方案,优化检测准确性以及改善医疗保健,银行业和电子商务等行业的响应时间的能力。本文进一步解决了诸如有限的欺诈数据和计算复杂性之类的挑战,并讨论了将塑造RL在预防欺诈中的未来作用的创新。关键字:强化学习,欺诈检测,自适应学习,异常检测,实时分析,机器学习,数字化转型,欺诈预防1。引言欺诈已成为各个行业的重大挑战,每年使组织数十亿美元造成。从医疗保健索赔欺诈到金融交易欺诈和电子商务付款欺诈,罪犯正在不断开发绕过检测的新技术。基于静态规则和阈值的传统欺诈检测系统,难以实时确定新的欺诈模式。他们无法动态地使企业暴露于越来越复杂的欺诈计划。强化学习(RL)是机器学习领域,代理商通过与环境进行互动并以奖励或罚款的形式接收反馈来做出决策,提供了一种新方法。rl不依赖预定义的规则,而是连续发展,这是欺诈检测的理想解决方案。